Semilattice Congruences

Michael Torpey
University of St Andrews

$$
2015-10-02
$$

Semigroups

Definition

A semigroup is a set S together with a binary operation $*: S \times S \rightarrow S$ such that

$$
(x * y) * z \quad=\quad x *(y * z)
$$

for all $x, y, z \in S$.

Semilattices

Two equivalent definitions:

Definition

A semilattice is a partially-ordered set (poset) such that any pair of elements has a greatest lower bound (meet).

Definition

A semilattice is a commutative semigroup whose elements are all idempotents.

How are these conditions equivalent?

- Let S be a commutative semigroup of idempotents.
- Define a partial order \leq on S by $a \leq b$ iff $a b=a$.
- Then $a b$ is a lower bound of a and b and it turns out that it is their greatest lower bound.
- Conversely, let (S, \leq) be a poset with meets.
- Define a multiplication - on S by $a \cdot b=a \wedge b$.
- Then (S, \cdot) is a commutative semigroup of idempotents.

Congruences

Definition

A congruence on a semigroup S is a relation $\rho \subseteq S \times S$ which is

- Reflexive: $(a, a) \in \rho$,
- Symmetric: $(a, b) \in \rho \quad \Rightarrow \quad(b, a) \in \rho$,
- Transitive: $(a, b),(b, c) \in \rho \quad \Rightarrow \quad(a, c) \in \rho$,
- Compatible: $(a, b) \in \rho \quad \Rightarrow \quad(x a, x b),(a x, b x) \in \rho$, for all $a, b, c, x \in S$.

Definition

Let $(a, b) \in S \times S$. The congruence generated by (a, b) is the least congruence ρ on S which contains the pair (a, b). We might write this as $\langle(a, b)\rangle$.

Blocks

- Consider a semilattice S, and a pair $(x, y) \in S \times S$.
- Let ρ be the congruence generated by (x, y).
- ρ has precisely one non-trivial congruence class $B_{x y}$, which is given by

$$
B_{x y}=\{t \in S \mid x y \leq t \leq x \text { or } x y \leq t \leq y\}
$$

Congruences generated by multiple pairs

- Consider the congruence ρ generated by two pairs: (x, y) and (s, t).
- This is the join of the two congruences $\langle(x, y)\rangle$ and $\langle(s, t)\rangle$.
- The non-trivial congruence classes are either $B_{x y}$ and $B_{s t}$ (if these are disjoint), or the union $B_{x y} \cup B_{s t}$ (if they are not).

```
Lemma
\(B_{x y} \cap B_{s t} \neq \varnothing\) if and only if at least one of the following is true:
    - \(x y \leq x s\) and st \(\leq x s\),
    - \(x y \leq x t\) and \(s t \leq x t\),
    - \(x y \leq y s\) and \(s t \leq y s\),
    - \(x y \leq y t\) and st \(\leq y t\).
i.e. if \(x y \leq p\) and \(s t \leq p\) for some \(p \in\{x s, x t, y s, y t\}\).
```


Block coincidence table

We can use the above to calculate a block coincidence table.

- Check each generating pair (x, y) against each other generating pair (s, t) to see if $B_{x y}$ and $B_{s t}$ overlap.
- Store the information in a table, so we can quickly check whether two blocks are in the same congruence class.

Congruence class number

To find which congruence class an element a is in, use the following algorithm:

Algorithm

```
procedure CongruenceClassNo( }\rho,a
    R:= GeneratingPairs( }\rho
    for }i\in{1\ldots|R|} d
        Let (x,y)=R[i]
        if }xy\leqa\mathrm{ and ( }a\leqx\mathrm{ or }a\leqy)\mathrm{ then
        return BlockCoincidenceTABle(\rho)[i]
        end if
    end for
    return 0 (singleton)
end procedure
```

Two elements a and b are related if and only if $a=b$ or $\operatorname{CongruenceClassNo}(a)=\operatorname{CongruenceClassNo}(b) \neq 0$.

Thank you

