Semilattice Congruences

Michael Torpey

University of St Andrews

2015-10-02

Definition

A semigroup is a set S together with a binary operation $*:S\times S\to S$ such that

$$(x*y)*z = x*(y*z)$$

for all $x, y, z \in S$.

Two equivalent definitions:

Definition

A **semilattice** is a partially-ordered set (poset) such that any pair of elements has a *greatest lower bound* (*meet*).

Definition

A **semilattice** is a commutative semigroup whose elements are all idempotents.

- Let S be a commutative semigroup of idempotents.
- Define a partial order \leq on S by $a \leq b$ iff ab = a.
- Then *ab* is a lower bound of *a* and *b* and it turns out that it is their *greatest lower bound*.
- Conversely, let (S, \leq) be a poset with meets.
- Define a multiplication \cdot on S by $a \cdot b = a \wedge b$.
- Then (S, \cdot) is a commutative semigroup of idempotents.

Definition

A **congruence** on a semigroup S is a relation $\rho \subseteq S \times S$ which is

- Reflexive: $(a, a) \in \rho$,
- Symmetric: $(a, b) \in \rho \quad \Rightarrow \quad (b, a) \in \rho$,
- Transitive: $(a, b), (b, c) \in \rho \implies (a, c) \in \rho$,
- Compatible: $(a, b) \in \rho \quad \Rightarrow \quad (xa, xb), (ax, bx) \in \rho,$

for all $a, b, c, x \in S$.

Definition

Let $(a, b) \in S \times S$. The congruence **generated by** (a, b) is the least congruence ρ on S which contains the pair (a, b). We might write this as $\langle (a, b) \rangle$.

- Consider a semilattice S, and a pair $(x, y) \in S \times S$.
- Let ρ be the congruence generated by $(\boldsymbol{x},\boldsymbol{y}).$
- ρ has precisely one non-trivial congruence class B_{xy} , which is given by

$$B_{xy} = \{t \in S \mid xy \le t \le x \text{ or } xy \le t \le y\}.$$

Congruences generated by multiple pairs

- Consider the congruence ρ generated by two pairs: (x, y) and (s, t).
- This is the *join* of the two congruences $\langle (x, y) \rangle$ and $\langle (s, t) \rangle$.
- The non-trivial congruence classes are either B_{xy} and B_{st} (if these are disjoint), or the union $B_{xy} \cup B_{st}$ (if they are not).

Lemma

 $B_{xy} \cap B_{st} \neq \emptyset$ if and only if at least one of the following is true:

- $xy \leq xs$ and $st \leq xs$,
- $xy \leq xt$ and $st \leq xt$,
- $xy \leq ys$ and $st \leq ys$,
- $xy \leq yt$ and $st \leq yt$.

i.e. if $xy \leq p$ and $st \leq p$ for some $p \in \{xs, xt, ys, yt\}$.

We can use the above to calculate a **block coincidence table**.

- Check each generating pair (x, y) against each other generating pair (s, t) to see if B_{xy} and B_{st} overlap.
- Store the information in a table, so we can quickly check whether two blocks are in the same congruence class.

Congruence class number

To find which congruence class an element a is in, use the following algorithm:

Algorithm

```
procedure CONGRUENCECLASSNO(\rho, a)

R := \text{GENERATINGPAIRS}(\rho)

for i \in \{1 \dots |R|\} do

Let (x, y) = R[i]

if xy \le a and (a \le x \text{ or } a \le y) then

return BLOCKCOINCIDENCETABLE(\rho)[i]

end if

end for

return 0 (singleton)

end procedure
```

Two elements a and b are related if and only if a = b or CONGRUENCECLASSNO(a) =CONGRUENCECLASSNO $(b) \neq 0$.

Thank you