Inverse Semigroups

Michael Torpey
University of St Andrews

2016-01-26

Semigroups

Definition

A semigroup monoid group
is a set S together with a binary operation $*: S \times S \rightarrow S$ which

- is associative: $(x y) z=x(y z)$
- has an identity $e: \quad e x=x e=x$
- has inverses $x^{-1}: \quad x x^{-1}=x^{-1} x=e$

What is an inverse?

In the language of groups:

Definition

An inverse of an element x in a group G is some $y \in G$ such that

$$
x y=y x=e,
$$

where e is the identity.
Clearly in a semigroup, this doesn't apply.
In the language of semigroups:

Definition

An inverse of an element x in a semigroup S is some $y \in S$ such that

$$
x y x=x \quad \text { and } \quad y x y=y .
$$

Note: group inverses are semigroup inverses.

Regularity

Definition

An inverse of an element x in a semigroup S is some $y \in S$ such that

$$
x y x=x \quad \text { and } \quad y x y=y .
$$

Definition

An element $x \in S$ is regular if it has an inverse.

Definition

A semigroup S is regular if every element has an inverse.
Note: groups are regular.

Inverses aren't unique

- In a group, x has precisely one inverse, x^{-1}.
- In a semigroup, x could have several inverses.
- We just need $y, z \in S$ such that

$$
x y x=x, \quad y x y=y, \quad x z x=x, \quad z x z=z
$$

- For example, in the full transformation semigroup T_{3}, let

$$
\begin{aligned}
& x=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right), \quad y=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 2
\end{array}\right), \quad z=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3
\end{array}\right) . \\
& x y x=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right)=x, \\
& y x y=\left(\begin{array}{ll}
1 & 2
\end{array} 3\right. \\
& 2
\end{aligned} 2
$$

So x has at least two inverses, y and z.

Inverse Semigroups

Definition

An inverse semigroup is a semigroup in which each element has precisely one inverse.

Example

Groups are inverse semigroups.

Proof.

An element x of a group G has at least one inverse: its group inverse x^{-1}. Let y and z be inverses for x. Now, $x y x=x$ and $x z x=x$, so

$$
x y x=x z x
$$

This cancels to $x y=x z$ and then to $y=z$. Hence x has precisely one inverse.

Partial Permutations

Definition

A permutation on a set X is a bijection from X to X.

Definition

A partial permutation on a set X is a bijection from a subset of X to a subset of X.

Example

The partial permutation $x=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & \underset{5}{5} \\ \hline\end{array}\right)$ is a bijection from $\{1,3,5\}$ to $\{2,3,5\}$.
We can multiply: $x^{2}=\left(\begin{array}{llll}1 & 2 & 4 & 4 \\ 3 & - & 2 & 5 \\ \hline\end{array}\right)\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 3 & - & - & 5 \\ \hline\end{array}\right)=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & - & - & 5 \\ - & 5\end{array}\right)$.
We can find a unique inverse: $x^{-1}=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ -3 & 4 & - & 5\end{array}\right)$.
This is all independent of what semigroup x is in.

"Cayley's Theorem for Inverse Semigroups"

Theorem (Cayley, for groups)
Every group G is isomorphic to a permutation group.
Theorem (Cayley, for semigroups)
Every semigroup S is isomorphic to a transformation semigroup.
Theorem (Wagner-Preston)
Every inverse semigroup I is isomorphic to an inverse semigroup of partial permutations.

Thank you

