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Transformations

Definition
A transformation on a set X is any function τ : X → X

Assume X = n = {1, 2, . . . , n}, and write TX as Tn.

Theorem (Cayley for semigroups)
Every semigroup S is isomorphic to a subsemigroup of the full
transformation semigroup TS . [1, p.7]

α =
(

1 2 3 4 5
1 3 1 5 5

)
, β =

(
1 2 3 4 5
3 1 3 3 5

)

α = , β = , αβ
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Partitions

Pn – the (bi)partition monoid

α = , β =

Definition
A (bi)partition is any equivalence relation on n ∪ n′, where
n′ = {1′, 2′, . . . , n′}.

γ = , δ =

γδ = = =
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Attributes of partitions

Definition
A block in a partition α ∈ Pn is transversal if it contains points from
both n and n′ (i.e. it “crosses the diagram”).

Definition
The rank of a partition is the number of transversal blocks it has.

α =

β =

rank(α) = 1, rank(β) = 2
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Attributes of partitions

Definition
The domain (resp. codomain) of a partition α ∈ Pn is the set of points
i ∈ n (resp. i′ ∈ n′) which lie in transversal blocks.

Definition
The kernel (resp. cokernel) of a partition α ∈ Pn is the restriction of α to
n (resp. n′).

α =

domα = {1, 3, 4}, codomα = {1′, 2′},

kerα =
{
{1, 3, 4}, {2}, {5}

}
, cokerα =

{
{1′, 2′}, {3′, 4′}, {5′}

}
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Submonoids of Pn

Tn – the full transformation monoid embeds as seen,
On ≤ In ≤ PT n embed similarly,
Bn – the Brauer monoid – each block has size 2,
PBn – the partial Brauer monoid – each block has size 1 or 2,
PPn – the planar partition monoid – diagram is planar,
Jn – the Jones monoid – diagram is planar; block size 2,
Mn – the Motzkin monoid – diagram is planar; block size 1 or 2.

[2]
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Congruences

Definition
A congruence ρ on a semigroup S is an equivalence relation that respects
multiplication:

(x, y) ∈ ρ =⇒ (ax, ay), (xa, ya) ∈ ρ (∀a ∈ S).

Example
The trivial congruence ∆S = {(x, x) | x ∈ S} and the universal
congruence ∇S = S × S are both congruences of any semigroup S.

Example
If a semigroup S has an ideal I, then the Rees congruence
ρI = ∆S ∪ (I × I) is a congruence on S.
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Congruences

Theorem
A set of pairs R ⊆ S × S has a unique least congruence R] such that
R ⊆ R]. [1, 1.5]

Theorem
The congruences of a semigroup S form a lattice with respect to
containment (⊆), intersection (∩) and join (∨). [1, 1.8]
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Congruences of the Motzkin Monoid

Mn – Motzkin monoid – planar partitions of n ∪ n′ with blocks of size 1
or 2

Lemma (East, Mitchell, Ruškuc, T.)
All Rees congruences of Mn have the form

Rq = {(α, β) ∈Mn | rank(α), rank(β) ≤ q} .

We also need the following congruences:
ρ relates elements of rank 0 with the same kernel,
λ relates elements of rank 0 with the same cokernel,
µ relates elements of rank 0 or 1 with the same kernel and cokernel.

Theorem (East, Mitchell, Ruškuc, T.)
The congruences of Mn are {∆, ρ, λ, µ, µ ∨ ρ, µ ∨ λ,R0, R1, . . . , Rn}. All
these congruences are principal.
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All Rees congruences of Mn have the form

Rq = {(α, β) ∈Mn | rank(α), rank(β) ≤ q} .

We also need the following congruences:
ρ relates elements of rank 0 with the same kernel,
λ relates elements of rank 0 with the same cokernel,
µ relates elements of rank 0 or 1 with the same kernel and cokernel.

Theorem (East, Mitchell, Ruškuc, T.)
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Congruences of the Motzkin Monoid
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Thank you for listening
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