Congruences of the Partition Monoid

 Based on joint work with J. East, J.D. Mitchell, and N. Ruškuc
Michael Torpey

University of St Andrews
2017-05-17

Transformations

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.

Theorem (Cayley for semigroups)

Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_{S}. [1, p.7]

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.

Theorem (Cayley for semigroups)

Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_{S}. [1, p.7]

$$
\alpha=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 1 & 5 & 5
\end{array}\right), \quad \beta=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 3 & 3 & 5
\end{array}\right)
$$

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.
Theorem (Cayley for semigroups)
Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_{S}. [1, p.7]

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 1 & 5 & 5
\end{array}\right), \quad \beta=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 3 & 3 & 5
\end{array}\right)
$$

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.
Theorem (Cayley for semigroups)
Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_{S}. [1, p.7]

$$
\alpha=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 1 & 5 & 5
\end{array}\right), \quad \beta=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 3 & 3 & 5
\end{array}\right)
$$

$$
\alpha=\mathscr{V} .
$$

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.
Theorem (Cayley for semigroups)
Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_{S}. [1, p.7]

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 1 & 5 & 5
\end{array}\right), \quad \beta=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 3 & 3 & 5
\end{array}\right)
$$

Partitions

Partitions

\mathcal{P}_{n}

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

$$
\alpha=\mathrm{K}^{\circ}
$$

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\gamma=\mathbb{A}^{\bullet}
$$

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\gamma=\curvearrowleft \mathfrak{\curvearrowleft} \text { •' }
$$

$\gamma \delta=$

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\gamma=\mathfrak{\curvearrowleft} \text { • }
$$

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\gamma=\mathfrak{\curvearrowleft} \text { •' }
$$

Attributes of partitions

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_{n}$ is transversal if it contains points from both \mathbf{n} and \mathbf{n}^{\prime} (i.e. it "crosses the diagram").

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_{n}$ is transversal if it contains points from both \mathbf{n} and \mathbf{n}^{\prime} (i.e. it "crosses the diagram").

Definition

The rank of a partition is the number of transversal blocks it has.

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_{n}$ is transversal if it contains points from both \mathbf{n} and \mathbf{n}^{\prime} (i.e. it "crosses the diagram").

Definition

The rank of a partition is the number of transversal blocks it has.

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_{n}$ is transversal if it contains points from both \mathbf{n} and \mathbf{n}^{\prime} (i.e. it "crosses the diagram").

Definition

The rank of a partition is the number of transversal blocks it has.

$$
\operatorname{rank}(\alpha)=1
$$

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_{n}$ is transversal if it contains points from both \mathbf{n} and \mathbf{n}^{\prime} (i.e. it "crosses the diagram").

Definition

The rank of a partition is the number of transversal blocks it has.

$$
\operatorname{rank}(\alpha)=1, \quad \operatorname{rank}(\beta)=2
$$

Attributes of partitions

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

$$
\alpha=\longmapsto \cdot \longmapsto \cdot
$$

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

$$
\alpha=\mathfrak{R} \operatorname{dom} \alpha=\{1,3,4\},
$$

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

$$
\begin{gathered}
\alpha=\mathfrak{C} \cdot \stackrel{\bullet}{\operatorname{com} \alpha} \alpha=\{1,3,4\}, \quad \operatorname{codom} \alpha=\left\{1^{\prime}, 2^{\prime}\right\},
\end{gathered}
$$

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

$$
\begin{gathered}
\alpha=\ldots \prec \cdot \\
\operatorname{dom} \alpha=\{1,3,4\}, \quad \operatorname{codom} \alpha=\left\{1^{\prime}, 2^{\prime}\right\}, \\
\operatorname{ker} \alpha=\{\{1,3,4\},\{2\},\{5\}\},
\end{gathered}
$$

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

$$
\begin{gathered}
\alpha=\mathfrak{c} \cdot \\
\operatorname{dom} \alpha=\{1,3,4\}, \quad \operatorname{codom} \alpha=\left\{1^{\prime}, 2^{\prime}\right\}, \\
\operatorname{ker} \alpha=\{\{1,3,4\},\{2\},\{5\}\}, \quad \operatorname{coker} \alpha=\left\{\left\{1^{\prime}, 2^{\prime}\right\},\left\{3^{\prime}, 4^{\prime}\right\},\left\{5^{\prime}\right\}\right\}
\end{gathered}
$$

Submonoids of \mathcal{P}_{n}

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen,

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen,
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly,

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen,
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly,
- \mathcal{B}_{n} - the Brauer monoid - each block has size 2,

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen,
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly,
- \mathcal{B}_{n} - the Brauer monoid - each block has size 2,
- $\mathcal{P B} \mathcal{B}_{n}$ - the partial Brauer monoid - each block has size 1 or 2 ,

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen,
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly,
- \mathcal{B}_{n} - the Brauer monoid - each block has size 2,
- $\mathcal{P} \mathcal{B}_{n}$ - the partial Brauer monoid - each block has size 1 or 2 ,
- $\mathscr{P} \mathcal{P}_{n}$ - the planar partition monoid - diagram is planar,

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen,
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly,
- \mathcal{B}_{n} - the Brauer monoid - each block has size 2,
- $\mathcal{P} \mathcal{B}_{n}$ - the partial Brauer monoid - each block has size 1 or 2 ,
- $\mathscr{P} \mathcal{P}_{n}$ - the planar partition monoid - diagram is planar,
- \mathcal{J}_{n} - the Jones monoid - diagram is planar; block size 2,

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen,
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly,
- \mathcal{B}_{n} - the Brauer monoid - each block has size 2,
- $\mathcal{P} \mathcal{B}_{n}$ - the partial Brauer monoid - each block has size 1 or 2 ,
- $\mathscr{P} \mathcal{P}_{n}$ - the planar partition monoid - diagram is planar,
- \mathcal{J}_{n} - the Jones monoid - diagram is planar; block size 2,
- \mathcal{M}_{n} - the Motzkin monoid - diagram is planar; block size 1 or 2 .
[2]

Congruences

Congruences

Definition

A congruence ρ on a semigroup S is an equivalence relation that respects multiplication:

$$
(x, y) \in \rho \quad \Longrightarrow \quad(a x, a y),(x a, y a) \in \rho \quad(\forall a \in S)
$$

Congruences

Definition

A congruence ρ on a semigroup S is an equivalence relation that respects multiplication:

$$
(x, y) \in \rho \quad \Longrightarrow \quad(a x, a y),(x a, y a) \in \rho \quad(\forall a \in S)
$$

Example

The trivial congruence $\Delta_{S}=\{(x, x) \mid x \in S\}$

Congruences

Definition

A congruence ρ on a semigroup S is an equivalence relation that respects multiplication:

$$
(x, y) \in \rho \quad \Longrightarrow \quad(a x, a y),(x a, y a) \in \rho \quad(\forall a \in S)
$$

Example

The trivial congruence $\Delta_{S}=\{(x, x) \mid x \in S\}$ and the universal congruence $\nabla_{S}=S \times S$ are both congruences of any semigroup S.

Congruences

Definition

A congruence ρ on a semigroup S is an equivalence relation that respects multiplication:

$$
(x, y) \in \rho \quad \Longrightarrow \quad(a x, a y),(x a, y a) \in \rho \quad(\forall a \in S)
$$

Example

The trivial congruence $\Delta_{S}=\{(x, x) \mid x \in S\}$ and the universal congruence $\nabla_{S}=S \times S$ are both congruences of any semigroup S.

Example

If a semigroup S has an ideal I, then the Rees congruence $\rho_{I}=\Delta_{S} \cup(I \times I)$ is a congruence on S.

Congruences

Congruences

Theorem

A set of pairs $\mathbf{R} \subseteq S \times S$ has a unique least congruence \mathbf{R}^{\sharp} such that $\mathbf{R} \subseteq \mathbf{R}^{\sharp}$. [1, 1.5]

Congruences

```
Theorem
A set of pairs \mathbf{R}\subseteqS\timesS has a unique least congruence }\mp@subsup{\mathbf{R}}{}{\sharp}\mathrm{ such that
R}\subseteq\mp@subsup{\mathbf{R}}{}{\sharp}.[1,1.5
```

Theorem
The congruences of a semigroup S form a lattice with respect to containment (\subseteq), intersection (\cap) and join (\vee). [1, 1.8]

Congruences

Theorem

A set of pairs $\mathbf{R} \subseteq S \times S$ has a unique least congruence \mathbf{R}^{\sharp} such that $\mathbf{R} \subseteq \mathbf{R}^{\sharp} .[1,1.5]$

Theorem

The congruences of a semigroup S form a lattice with respect to containment (\subseteq), intersection (\cap) and join (\vee). [1, 1.8]

Congruences

Theorem

A set of pairs $\mathbf{R} \subseteq S \times S$ has a unique least congruence \mathbf{R}^{\sharp} such that $\mathbf{R} \subseteq \mathbf{R}^{\sharp} .[1,1.5]$

Theorem

The congruences of a semigroup S form a lattice with respect to containment (\subseteq), intersection (\cap) and join (\vee). [1, 1.8]

Congruences of the Motzkin Monoid

Congruences of the Motzkin Monoid

\mathcal{M}_{n} - Motzkin monoid

Congruences of the Motzkin Monoid

\mathcal{M}_{n} - Motzkin monoid - planar partitions of $\mathbf{n} \cup \mathbf{n}^{\prime}$ with blocks of size 1 or 2

Congruences of the Motzkin Monoid

\mathcal{M}_{n} - Motzkin monoid - planar partitions of $\mathbf{n} \cup \mathbf{n}^{\prime}$ with blocks of size 1 or 2

Lemma (East, Mitchell, Ruškuc, T.)
All Rees congruences of \mathcal{M}_{n} have the form

$$
R_{q}=\left\{(\alpha, \beta) \in \mathcal{M}_{n} \mid \operatorname{rank}(\alpha), \operatorname{rank}(\beta) \leq q\right\}
$$

Congruences of the Motzkin Monoid

\mathcal{M}_{n} - Motzkin monoid - planar partitions of $\mathbf{n} \cup \mathbf{n}^{\prime}$ with blocks of size 1 or 2

Lemma (East, Mitchell, Ruškuc, T.)
All Rees congruences of \mathcal{M}_{n} have the form

$$
R_{q}=\left\{(\alpha, \beta) \in \mathcal{M}_{n} \mid \operatorname{rank}(\alpha), \operatorname{rank}(\beta) \leq q\right\}
$$

We also need the following congruences:

Congruences of the Motzkin Monoid

\mathcal{M}_{n} - Motzkin monoid - planar partitions of $\mathbf{n} \cup \mathbf{n}^{\prime}$ with blocks of size 1 or 2

Lemma (East, Mitchell, Ruškuc, T.)
All Rees congruences of \mathcal{M}_{n} have the form

$$
R_{q}=\left\{(\alpha, \beta) \in \mathcal{M}_{n} \mid \operatorname{rank}(\alpha), \operatorname{rank}(\beta) \leq q\right\}
$$

We also need the following congruences:

- ρ relates elements of rank 0 with the same kernel,

Congruences of the Motzkin Monoid

\mathcal{M}_{n} - Motzkin monoid - planar partitions of $\mathbf{n} \cup \mathbf{n}^{\prime}$ with blocks of size 1 or 2

Lemma (East, Mitchell, Ruškuc, T.)
All Rees congruences of \mathcal{M}_{n} have the form

$$
R_{q}=\left\{(\alpha, \beta) \in \mathcal{M}_{n} \mid \operatorname{rank}(\alpha), \operatorname{rank}(\beta) \leq q\right\}
$$

We also need the following congruences:

- ρ relates elements of rank 0 with the same kernel,
- λ relates elements of rank 0 with the same cokernel,

Congruences of the Motzkin Monoid

\mathcal{M}_{n} - Motzkin monoid - planar partitions of $\mathbf{n} \cup \mathbf{n}^{\prime}$ with blocks of size 1 or 2

Lemma (East, Mitchell, Ruškuc, T.)
All Rees congruences of \mathcal{M}_{n} have the form

$$
R_{q}=\left\{(\alpha, \beta) \in \mathcal{M}_{n} \mid \operatorname{rank}(\alpha), \operatorname{rank}(\beta) \leq q\right\}
$$

We also need the following congruences:

- ρ relates elements of rank 0 with the same kernel,
- λ relates elements of rank 0 with the same cokernel,
- μ relates elements of rank 0 or 1 with the same kernel and cokernel.

Congruences of the Motzkin Monoid

\mathcal{M}_{n} - Motzkin monoid - planar partitions of $\mathbf{n} \cup \mathbf{n}^{\prime}$ with blocks of size 1 or 2

Lemma (East, Mitchell, Ruškuc, T.)
All Rees congruences of \mathcal{M}_{n} have the form

$$
R_{q}=\left\{(\alpha, \beta) \in \mathcal{M}_{n} \mid \operatorname{rank}(\alpha), \operatorname{rank}(\beta) \leq q\right\}
$$

We also need the following congruences:

- ρ relates elements of rank 0 with the same kernel,
- λ relates elements of rank 0 with the same cokernel,
- μ relates elements of rank 0 or 1 with the same kernel and cokernel.

Theorem (East, Mitchell, Ruškuc, T.)
The congruences of \mathcal{M}_{n} are

Congruences of the Motzkin Monoid

\mathcal{M}_{n} - Motzkin monoid - planar partitions of $\mathbf{n} \cup \mathbf{n}^{\prime}$ with blocks of size 1 or 2

Lemma (East, Mitchell, Ruškuc, T.)
All Rees congruences of \mathcal{M}_{n} have the form

$$
R_{q}=\left\{(\alpha, \beta) \in \mathcal{M}_{n} \mid \operatorname{rank}(\alpha), \operatorname{rank}(\beta) \leq q\right\}
$$

We also need the following congruences:

- ρ relates elements of rank 0 with the same kernel,
- λ relates elements of rank 0 with the same cokernel,
- μ relates elements of rank 0 or 1 with the same kernel and cokernel.

Theorem (East, Mitchell, Ruškuc, T.)
The congruences of \mathcal{M}_{n} are $\left\{\Delta, \rho, \lambda, \mu, \mu \vee \rho, \mu \vee \lambda, R_{0}, R_{1}, \ldots, R_{n}\right\}$.

Congruences of the Motzkin Monoid

\mathcal{M}_{n} - Motzkin monoid - planar partitions of $\mathbf{n} \cup \mathbf{n}^{\prime}$ with blocks of size 1 or 2

Lemma (East, Mitchell, Ruškuc, T.)
All Rees congruences of \mathcal{M}_{n} have the form

$$
R_{q}=\left\{(\alpha, \beta) \in \mathcal{M}_{n} \mid \operatorname{rank}(\alpha), \operatorname{rank}(\beta) \leq q\right\}
$$

We also need the following congruences:

- ρ relates elements of rank 0 with the same kernel,
- λ relates elements of rank 0 with the same cokernel,
- μ relates elements of rank 0 or 1 with the same kernel and cokernel.

Theorem (East, Mitchell, Ruškuc, T.)

The congruences of \mathcal{M}_{n} are $\left\{\Delta, \rho, \lambda, \mu, \mu \vee \rho, \mu \vee \lambda, R_{0}, R_{1}, \ldots, R_{n}\right\}$. All these congruences are principal.

Congruences of the Motzkin Monoid

Thank you for listening

國 Howie, J.M., Fundamentals of Semigroup Theory, Oxford Science Publications, 1995, 1.1, 1.5 \& 1.8, 7-35.
回 James East, Attila Egri-Nagy, Andrew R. Francis, James D. Mitchell, Finite Diagram Semigroups: Extending the Computational Horizon, https://arxiv.org/abs/1502.07150
R Igor Dolinka, James East, and Robert D. Gray. Motzkin monoids and partial Brauer monoids. J. Algebra, 471:251-298, 1 February 2017. (http://www.sciencedirect.com/science/article/pii/ S0021869316303349).

