
Computing with Congruences on Finite 0-Simple Semigroups

Michael Torpey

19th May 2014

Abstract

Congruences are a core topic of interest in semigroup theory: the homomorphic images of a semigroup
are described uniquely by its congruences (and the quotients they define) in much the same way that a
group’s homomorphic images are described by its normal subgroups. This fundamental indicator of a
semigroup’s structure, therefore, is one of the first things that should be considered when attempting to
describe a semigroup computationally. To be able to represent a congruence, and to compute interesting
information about it, tends to be computationally difficult with the methods that have so far been
described in theory and implemented in computer algebra systems such as GAP. In particular, methods
for use with semigroup congruences are very limited.

In this paper we present a new way of representing semigroup congruences on one class of semigroups
– the finite 0-simple semigroups – and we present a wide range of functions which can be applied to
them to find interesting properties quickly. These methods are largely based on existing theory, but
improve on current implementations of congruences, for example the GAP system’s representation by a
set of generating pairs. We also present methods for converting each way between these two congruence
representations, and we present a method to find all the congruences of a given semigroup.

Finally we extend the theory to provide an algorithm which decides whether a semigroup is congruence-
free. Whereas the other methods apply only to finite 0-simple semigroups, this method applies to all
finite semigroups.

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Expected Readership . 2
1.3 GAP Implementation . 2
1.4 Basic Definitions . 3
1.5 Congruences and Linked Triples . 4

2 Semigroup Congruences By Linked Triple 11
2.1 Describing Linked Triples Computationally . 11
2.2 Finding the Congruences of a Semigroup . 12

2.2.1 Add a Relation . 13
2.2.2 Subpartitions . 13

2.3 Is a Triple Linked? . 14
2.4 Equality . 15
2.5 Pair Inclusion . 15
2.6 Elements of a Congruence Class . 16
2.7 Join . 17
2.8 Meet . 17
2.9 Universal Congruences . 18

3 Congruence Classes By Class Triple 20
3.1 Describing Class Triples Computationally . 21
3.2 Finding the Classes of a Congruence . 21
3.3 Number of Congruence Classes . 21
3.4 Congruence Class of an Element . 22
3.5 Class Inclusion . 22
3.6 Class Multiplication . 23
3.7 Size of a Class . 23
3.8 Canonical Representative . 23

4 Conversion 24
4.1 Generating Pairs to Linked Triple . 24
4.2 Linked Triple to Generating Pairs . 24

5 Congruence-Free Semigroups 26

6 Evaluation 29
6.1 Benchmarking . 29
6.2 Extensions . 30

1

Chapter 1

Introduction

1.1 Motivation

Congruences are a core topic of interest in semigroup theory: the homomorphic images of a semigroup
are described uniquely by its congruences in much the same way that a group’s homomorphic images
are described by its normal subgroups. This is known as the First Isomorphism Theorem: Theorem
1.5.2 in [1, p.23] for semigroups, and Theorem 2.9 in [2, p.16] for groups. Hence congruences are a
fundamental indicator of the structure of a semigroup, and are therefore one of the first things that
should be considered when attempting to describe a semigroup computationally. However, to be able to
represent a congruence, and to compute interesting information about it, tends to be computationally
difficult with the methods that have so far been described in theory and implemented in computer algebra
systems such as GAP.[4] Compared to the level of research which has gone into computational group
theory, computational semigroup theory is in some ways in its infancy, without the iterations of review
and improvement which group algorithms have enjoyed over many years. See for example [2], a large
collection of group algorithms to which no counterpart exists in semigroup theory. In particular, methods
for use with semigroup congruences are very limited.

In this paper we present a new way of representing semigroup congruences on one class of semigroups
– the finite 0-simple semigroups – and we present a wide range of functions which can be applied to
them to find interesting properties quickly. These methods are largely based on existing theory, but
improve on current implementations of congruences, for example the GAP system’s representation by a
set of generating pairs. We also present methods for converting each way between these two congruence
representations, and we present a method to find all the congruences of a given semigroup.

Finally we extend the theory to provide an algorithm which decides whether a semigroup is congruence-
free. Whereas the other methods apply only to finite 0-simple semigroups, this method applies to all
finite semigroups.

1.2 Expected Readership

This text is aimed at readers who have some knowledge of semigroup theory, perhaps having taken a
university course at late undergraduate or postgraduate level such as [3]. However, this text is designed
to be as accessible as possible to readers with very little semigroup theory, stating as much background
theory inside the paper itself as possible, and not relying on external knowledge where it can be avoided.
A reference book such as [1] might be useful to such readers, and should be sufficient to understand all
of the material.

1.3 GAP Implementation

This theoretical description accompanies a significant body of code which uses the GAP programming
language [4] to implement the algorithms which follow. This code has been released under the GNU
General Public Licence as part of GAP’s Semigroups package [5] in the 2.0 release. The full code of the

2

Semigroups package is attached to this document digitally; the relevant segments written by the author
of this paper are in the gap directory, as follows:

• All code in reesmat-cong.gi

• All code in univcong.gi

• The IsCongruenceFreeSemigroup method in properties.gi

and the declarations in the three corresponding .gd files. The functions inside these files implement all
the methods described in Chapters 2-5.

1.4 Basic Definitions

First, we need some basic definitions to introduce some of the ideas which will be encountered later on.

Definition 1.1. A semigroup is a set S together with a binary operation ∗ : S × S → S such that

(x ∗ y) ∗ z = x ∗ (y ∗ z)

for all x, y, z ∈ S.

Definition 1.2. A congruence on a semigroup S is an equivalence relation ρ ⊆ S × S such that

(x, y) ∈ ρ implies that (ax, ay), (xa, ya) ∈ ρ,

for all x, y, a ∈ S.

For any semigroup S, the relation S × S, which relates every element of S to every other element
of S, fulfills the criteria in Definition 1.2; we call this the universal congruence. We also have the
relation ∆S = {(x, x) |x ∈ S}, which relates each element only to itself; this also fulfills the criteria, so
we call it the trivial congruence. Hence every semigroup has at least two congruences.

Definition 1.3. Let S be a semigroup.
A left ideal is a non-empty subset I ⊆ S such that si ∈ I for all s ∈ S and i ∈ I.
A right ideal is a non-empty subset I ⊆ S such that is ∈ I for all s ∈ S and i ∈ I.
An ideal is a non-empty subset I ⊆ S which is both a left ideal and a right ideal.

Definition 1.4. Let S be a semigroup. S0 is a semigroup consisting of the elements and multiplication
of S together with a zero element 0 such that

x0 = 0x = 0

for all x ∈ S0.

Definition 1.5. A zero is an element 0 in a semigroup S such that

x0 = 0x = 0

for all x ∈ S.

Definition 1.6. A semigroup with a zero is 0-simple if S and {0} are its only ideals. [3, p.51]

Definition 1.7. A semigroup with zero is completely 0-simple if it is 0-simple and contains left and
right ideals which are 0-minimal; i.e. S has a left ideal L which contains no left ideals except L and {0},
and S has a right ideal R which contains no right ideals except R and {0}. [3, p.52]

Observe that a finite semigroup is completely 0-simple if and only if it is 0-simple. This paper mainly
considers only finite semigroups, so we will usually refer to finite 0-simple semigroups, knowing that
these must be completely 0-simple. To start with, we define a structure which can be used to describe
any finite 0-simple semigroup up to isomorphism:

3

Definition 1.8. A Rees 0-matrix semigroup M0[T ; I,Λ;P] is the set

(I × T × Λ) ∪ {0}

with multiplication given by

(i, a, λ) · (j, b, µ) =

{
(i, apλjb, µ) if pλj 6= 0,
0 otherwise,

where

• T is a semigroup,

• I and Λ are index sets,

• P is a |Λ| × |I| matrix with entries (pλi)λ∈Λ,i∈I taken from T 0,

• 0x = x0 = 0 for all x in the semigroup.

[3, p.52]

Definition 1.9. A matrix P is regular if it has no row or column which consists entirely of zeros. That
is,

∀i ∈ I : ∃λ ∈ Λ : pλi 6= 0,

∀λ ∈ Λ : ∃i ∈ I : pλi 6= 0.

[1, p.70]

Theorem 1.10. (The Rees Theorem) Every completely 0-simple semigroup is isomorphic to a Rees
0-matrix semigroup M0[G; I,Λ;P], where G is a group and P is regular. Conversely, every such Rees
0-matrix semigroup is completely 0-simple.

Proof. Theorem 3.2.3 in [1, p.72-75].

Now we can describe any finite 0-simple semigroup as its isomorphic Rees 0-matrix semigroup. Hence
we can restrict our further investigations just to this type of semigroup. From now on, when we see a
Rees 0-matrix semigroup over G, we will assume that G is a group. Hence “a finite 0-simple Rees 0-
matrix semigroupM0[G; I,Λ;P]” refers to a finite 0-simple Rees 0-matrix semigroup over a group, with
a regular matrix P .

1.5 Congruences and Linked Triples

Next we consider the congruences of a finite 0-simple semigroup.

Definition 1.11. For a finite 0-simple Rees 0-matrix semigroup M0[G; I,Λ;P], a linked triple is a
triple

(N,S, T)

consisting of a normal subgroup N E G, an equivalence relation S on I and an equivalence relation T
on Λ, such that the following are satisfied:

1. S ⊆ εI , where εI = {(i, j) ∈ I × I | ∀λ ∈ Λ : pλi = 0 ⇐⇒ pλj = 0},

2. T ⊆ εΛ, where εΛ = {(λ, µ) ∈ Λ× Λ | ∀i ∈ I : pλi = 0 ⇐⇒ pµi = 0},

3. For all i, j ∈ I and λ, µ ∈ Λ such that pλi, pλj , pµi, pµj 6= 0 and either (i, j) ∈ S or (λ, µ) ∈ T , we
have that qλµij ∈ N , where

qλµij = pλip
−1
µi pµjp

−1
λj .

[1, p.86]

4

We can associate the linked triples of a finite 0-simple semigroup with its non-universal congruences,
using a function Γ defined as follows.

Theorem 1.12. For a finite 0-simple Rees 0-matrix semigroup M0[G; I,Λ;P], there exists a mapping
Γ from the non-universal congruences ρ onto the linked triples (N,S, T).

Proof. This proof and these definitions are adapted from material in [1, p.83-85].
First we will define the mapping Γ, and then we will prove that the triples in its image are all linked.
Let S = M0[G; I,Λ;P] be a finite 0-simple Rees 0-matrix semigroup. Hence by the Rees Theorem

(1.10) G is a group and P is regular.
Let ρ be a congruence on S, and consider the zero element. If (x, 0) ∈ ρ, then (xy, 0y) = (xy, 0) ∈ ρ

and (yx, y0) = (yx, 0) ∈ ρ for any y ∈ S. Hence the congruence class 0/ρ is an ideal of S. Since S is
0-simple, 0/ρ must be equal to S or {0}. In the first case, ρ is the universal congruence S × S. The
second case covers all the non-universal congruences, and so for all these congruences 0 is related only
to itself.

Recall the relations εI and εΛ as in Definition 1.11: εI relates the columns i and j if and only if those
columns contain zero entries in the same rows. Similarly, εΛ relates the rows λ and µ if and only if those
rows contain zero entries in the same columns.

Now let ρ be a non-universal congruence on S. We define a relation Sρ ⊆ I × I by the rule that
(i, j) ∈ Sρ if and only if

• (i, j) ∈ εI , and

• (i, p−1
λi , λ) ρ (j, p−1

λj , λ)

for all λ ∈ Λ such that pλi 6= 0 (and hence by εI , pλj 6= 0).
Since ρ and εI are reflexive, symmetric and transitive, we can see that Sρ is also reflexive, symmetric

and transitive. Hence Sρ is an equivalence relation on I.
Similarly, we define a relation Tρ ⊆ Λ× Λ by the rule that (λ, µ) ∈ Tρ if and only if

• (λ, µ) ∈ εΛ, and

• (i, p−1
λi , λ) ρ (i, p−1

µi , µ)

for all i ∈ I such that pλi 6= 0 (and hence by εI , pµi 6= 0). And similarly, Tρ is an equivalence relation on
Λ.

Finally, we want to find a normal subgroup Nρ E G to complete the triple. First we need to choose
a matrix entry in P which is not equal to 0. Since P is regular, the top row, which for this proof we will
call 1Λ, contains a non-zero entry. Label as 1I the first (furthest left) column such that p1Λ1I

6= 0. Now
let

Nρ = {a ∈ G | (1I , a, 1Λ) ρ (1I , 1G, 1Λ),

where 1G is the identity in the group G. For convenience we may abbreviate 1I and 1Λ to 1 when their
use is clear.

Now we are ready to define Γ as the function

Γ : ρ 7→ (Nρ,Sρ, Tρ).

which maps any non-universal congruence onto a triple with the entries defined above. We now need to
show that this is a linked triple as in Definition 1.11.

Since by reflexivity (1, 1G, 1) ρ (1, 1G, 1), we have that 1G ∈ Nρ, so Nρ 6= ∅. We now wish to show
that Nρ is a subgroup of G.

Let a, b ∈ Nρ, so that

(1, a, 1) ρ (1, 1G, 1) and (1, b, 1) ρ (1, 1G, 1).

Hence, since ρ is a congruence,

(1, a, 1)(1, p−2
11 , 1)(1, b, 1) ρ (1, 1G, 1)(1, p−2

11 , 1)(1, 1G, 1),

5

which implies
(1, ab, 1) ρ (1, 1G, 1),

and so ab ∈ Nρ.
Now let a ∈ Nρ, so that

(1, a, 1)(1, p−1
11 a

−1, 1) ρ (1, 1G, 1)(1, p−1
11 a

−1, 1),

and so
(1, 1G, 1) ρ (1, a−1, 1).

Hence a−1 ∈ Nρ. Now we know that Nρ is closed under multiplication and inverses, so Nρ ≤ G as
required. Next we wish to show that Nρ is normal.

Let a ∈ Nρ, g ∈ G. So

(1, g−1p−1
11 , 1)(1, a, 1)(1, p−1

11 g, 1) ρ (1, g−1p−1
11 , 1)(1, 1G, 1)(1, p−1

11 g, 1),

that is,
(1, g−1ag, 1) ρ (1, 1G, 1),

and so g−1ag ∈ Nρ, and Nρ E G.
So for a non-universal congruence ρ, we have a triple (Nρ,Sρ, Tρ) consisting of a normal subgroup

Nρ E G, a column equivalence Sρ ⊆ I × I, and a row equivalence Tρ ⊆ Λ× Λ. To prove that this triple
is linked in the sense of Definition 1.11, we just need to prove condition (3).

Let i, j ∈ I and λ, µ ∈ Λ such that pλi, pλj , pµi, pµj 6= 0, and require that either (i, j) ∈ Sρ (λ, µ) ∈ Tρ.
Without loss of generality, suppose that (i, j) ∈ Sρ (the case for (λ, µ) ∈ Tρ is similar). Now by the
definition of Sρ,

(i, p−1
µi , µ) ρ (j, p−1

µj , µ),

and so
(1, 1G, λ)(i, p−1

µi , µ)(j, p−1
λj , 1) ρ (1, 1G, λ)(j, p−1

µj , µ)(j, p−1
λj , 1),

which implies that
(1, pλip

−1
µi pµjp

−1
λj , 1) ρ (1, pλjp

−1
µj pµjp

−1
λj , 1),

that is,
(1, qλµij , 1) ρ (1, 1G, 1).

Hence qλµij ∈ N , and so (Nρ,Sρ, Tρ) is linked.

We now know that Γ is a function which maps non-universal congruences onto linked triples. In order
to use congruences and linked triples interchangeably, we need Γ to be a bijection. We prove this in
Theorems 1.15 and 1.16 shortly, but first we need to establish a lemma.

Lemma 1.13. Let ρ be a congruence on a finite 0-simple Rees 0-matrix semigroup over a group.

(1, a, 1) ρ (1, b, 1) if and only if ab−1 ∈ Nρ

for all a, b ∈ G. [1, p.85]

Proof. Let (1, a, 1) ρ (1, b, 1). Hence

(1, a, 1)(1, p−1
11 b
−1, 1) ρ (1, b, 1)(1, p−1

11 b
−1, 1),

and so (1, ab−1, 1) ρ (1, 1G, 1), and therefore ab−1 ∈ Nρ. Each of these implications applies in both
directions, so the converse is true.

Lemma 1.14. If (i, a, λ) ρ (j, b, µ) then (i, j) ∈ Sρ and (λ, µ) ∈ Tρ.

6

Proof. This proof is adapted from Lemma 3.5.3 in [1, p.86].
By definition (as in Theorem 1.12), (i, j) ∈ Sρ if and only if (i, j) ∈ εI and (i, p−1

ξi , ξ) ρ (j, p−1
ξj , ξ) for

every ξ ∈ Λ such that pξi 6= 0.
To show that (i, j) ∈ εI , choose ξ ∈ Λ such that pξi = 0. We have

0 = (1, 1G, ξ)(i, a, λ) ρ (1, 1G, ξ)(j, b, µ),

and since |0/ρ| = 1, we have (1, 1G, ξ)(j, b, µ) = 0, which implies that pξj = 0. So pξi = 0 implies pξj = 0,
and by similar reasoning pξj = 0 implies pξi = 0. Hence (i, j) ∈ εI .

Now, to show the other part of the definition, we present the following chain of ρ-related pairs, where
x ∈ I and ξ ∈ Λ such that pξi, pλx 6= 0:

(i, a, λ) ρ (j, b, µ)

(1, 1G, ξ)(i, a, λ) ρ (1, 1G, ξ)(j, b, µ)

(1, 1G, ξ)(i, a, λ)(x, p11, 1) ρ (1, 1G, ξ)(j, b, µ)(x, p11, 1)

(1, pξiapλxp11, 1) ρ (1, pξjbpµxp11, 1)

Let this be written as (1, c, 1) ρ (1, d, 1), and from Lemma 1.13 we have cd−1 ∈ Nρ. Since Nρ is normal,
we have c−1(cd−1)−1c = c−1d ∈ Nρ, and so again by Lemma 1.13,

(1, c−1, 1) ρ (1, d−1, 1)

(x, 1G, 1)(1, c−1, 1)(1, p−1
11 , ξ) ρ (x, 1G, 1)(1, d−1, 1)(1, p−1

11 , ξ)

(i, a, λ)(x, 1G, 1)(1, c−1, 1)(1, p−1
11 , ξ) ρ (j, b, µ)(x, 1G, 1)(1, d−1, 1)(1, p−1

11 , ξ)

(i, p−1
ξi , ξ) ρ (j, p−1

xij , ξ)

and we have the result required. Hence (i, j) ∈ Sρ. A similar argument gives the stated result for Tρ.

Theorem 1.15. The function Γ is injective.

Proof. We want to prove that for two non-universal congruences ρ and σ, Γ(ρ) = Γ(σ) if and only if
ρ = σ.

Clearly ρ = σ implies that Γ(ρ) = Γ(σ). Conversely, let ρ and σ be non-universal congruences on S
with

Γ(ρ) = Γ(σ) = (N,S, T),

and let
(i, a, λ) ρ (j, b, µ).

By Theorem 1.14, (i, j) ∈ S and (λ, µ) ∈ T . Now choose k ∈ I, ν ∈ Λ as follows: k is the first column
such that pλk 6= 0 (and so pµk 6= 0), and ν is the first row such that pνi 6= 0 (and so pνj 6= 0). We have

(1, 1G, ν)(i, a, λ)(k, 1G, 1) ρ (1, 1G, ν)(j, b, µ)(k, 1G, 1),

that is, (1, pνiapλk, 1) ρ (1, pνjbpµk, 1). By Lemma 1.13, pνiapλk(pνjbpµk)−1 ∈ N , and so we can go back
to

(1, pνiapλk, 1) σ (1, pνjbpµk, 1).

Now, since (i, j) ∈ S we have the following:

(i, p−1
νi , ν) σ (j, p−1

νj , ν),

(i, p−1
νi , ν)(i, p−1

νi p
−1
11 , 1) σ (j, p−1

νj , ν)(i, p−1
νi p
−1
11 , 1),

(i, p−1
νi p
−1
11 , 1) σ (j, p−1

νj p
−1
11 , 1),

and by a similar argument, since (λ, µ) ∈ T ,

(1, p−1
11 p
−1
λk , λ) σ (1, p−1

11 p
−1
µk , µ).

7

Now, using the three related pairs we have established, and using the fact that σ is a congruence, we
have

(i, p−1
νi p
−1
11 , 1)(1, pνiapλk, 1)(1, p−1

11 p
−1
λk , λ) σ (j, p−1

νj p
−1
11 , 1)(1, pνjbpµk, 1)(1, p−1

11 p
−1
µk , µ),

which is to say that (i, a, λ) σ (j, b, µ). Hence ρ = σ, and Γ is injective. [1, p.87]

Theorem 1.16. The function Γ is surjective.

Proof. This proof is adapted from Lemma 3.5.6 in [1, p.87-90].
We need to show that for each linked triple (N,S, T) there exists some congruence ρ such that

Γ(ρ) = (N,S, T). Let (N,S, T) be a linked triple, and define a relation ρ such that two non-zero
elements (i, a, λ) and (j, b, µ) are ρ-related if and only if

1. (i, j) ∈ S;

2. (λ, µ) ∈ T ;

3. pξiapλx(pξjbpµx)−1 ∈ N for some x ∈ I, ξ ∈ Λ such that pξi, pξj , pλx, pµx 6= 0;

and 0 is related only to itself.
We wish to establish that ρ is a non-universal congruence, and that Γ(ρ) = (N,S, T). But first we

establish a lemma to help us prove this.

Lemma 1.17. If condition 3 above holds for SOME x ∈ I, ξ ∈ Λ such that pξi, pξj , pλx, pµx 6= 0, then it
must hold for ALL x ∈ I, ξ ∈ Λ such that pξi, pξj , pλx, pµx 6= 0.

Proof. This proof comes from Lemma 3.5.7 in [1, p.88].
Let x ∈ I, ξ ∈ Λ be such that pξi, pξj , pλx, pµx 6= 0 and pξiapλx(pξjbpµx)−1 ∈ N .
Also let y ∈ I, η ∈ Λ be such that pηi, pηj , pλy, pµy 6= 0. We wish to show that

pηiapλy(pηjbpµy)−1 ∈ N.

First, for any c, d ∈ G such that cd ∈ N , we know that dc ∈ N (since dc = c−1(cd)c). Hence, since
we have pξiapλx(pξjbpµx)−1 ∈ N, we also have

pλxp
−1
µx b
−1p−1

ξj pξia ∈ N.

Note that since (λ, µ) ∈ T , (N,S, T) is a linked triple, and pλx, pλy, pµx, pµy 6= 0, we have

qλµyx = pλyp
−1
µy pµxp

−1
λx ∈ N,

and multiplying these two elements gives us

pλyp
−1
µy b
−1p−1

ξj pξia ∈ N.

Again using the property cd 7→ dc, we have

apλyp
−1
µy b
−1p−1

ξj pξi ∈ N.

Now since (j, i) ∈ S, (N,S, T) is a linked triple, and pξi, pξj , pηi, pηj 6= 0, we have qξηji ∈ N , and so

p−1
ξi qξηjip

−1
ξi = p−1

ξi pξjp
−1
ηj pηi ∈ N.

The product of these two elements is apλyp
−1
µy b
−1p−1

ηj pηi ∈ N, which we reorder as before, and collect
the inverses, to give

pηiapλy(pηjbpµy)−1 ∈ N.

8

Now we return to Theorem 1.16, and we wish to show that ρ is a congruence. We can see that ρ is
reflexive simply by applying i = j, a = b, λ = µ to the definition. Also, ρ is symmetric, since S and T
are symmetric, and since cd−1 ∈ N implies that (cd−1)−1 = dc−1 ∈ N .

To show that ρ is transitive, consider three elements (i, a, λ), (j, b, µ), (k, c, ν) such that

(i, a, λ) ρ (j, b, µ) and (j, b, µ) ρ (k, c, ν).

Clearly by the transitivity of S and T , we have (i, k) ∈ S and (λ, ν) ∈ T . Choose x ∈ I, ξ ∈ Λ such that
pξi, pξk, pλx, pνx 6= 0. Since (i, j) ∈ S and (λ, µ) ∈ T , we also have pξj , pµx 6= 0. By Lemma 1.17, these
x and ξ are sufficient that

pξiapλx(pξjbpµx)−1 ∈ N and pξjapµx(pξkcpνx)−1 ∈ N,

and these multiply to give
pξiapλx(pξkcpνx)−1 ∈ N,

and therefore (i, a, λ) ρ (k, c, ν), so ρ is transitive.
To show that ρ is a left congruence, again consider three elements (i, a, λ), (j, b, µ), (k, c, ν) such that

(i, a, λ) ρ (j, b, µ). We need to prove that (k, c, ν)(i, a, λ) ρ (k, c, ν)(j, b, µ).
Since (i, j) ∈ S, pνi and pνj are either both zero or both non-zero. If they are both zero, then

(k, c, ν)(i, a, λ) = (k, c, ν)(j, b, µ) = 0,

and so the two products are certainly ρ-related. If they are both non-zero, then we need to show that

(k, cpνia, λ) ρ (k, cpνjb, µ).

Certainly we have that (k, k) ∈ S and (λ, µ) ∈ T . Hence we just need that

pξkcpνiapλx(pξkcpνjbpµx)−1 ∈ N

for some x ∈ I and ξ ∈ Λ with appropriate non-zero entries.
We have that (i, a, λ) ρ (j, b, µ) and therefore

pξiapλx(pξjbpµx)−1 ∈ N

for every x ∈ I, ξ ∈ Λ such that pξi, pξj , pλx, pµx 6= 0. Since in this case pνi, pνj 6= 0, we set ξ = ν and
we immediately have

pνiapλx(pνjbpµx)−1 ∈ N

for any x ∈ I with pλx, pµx 6= 0. If we conjugate this formula by the element c−1p−1
ξk , we get the formula

we wanted, and ρ is a left congruence. By a similar argument, ρ is a right congruence, and so we have
the result that ρ is a two-sided congruence.

Now that we know ρ is a non-universal congruence, we need only to show that Γ(ρ) = (N,S, T), and
we will know that Γ is surjective.

First we show that S = Sρ. If (i, j) ∈ Sρ then (i, p−1
λi , λ) ρ (j, p−1

λj , λ) for every λ ∈ Λ such that
pλi 6= 0; hence (i, j) ∈ S. Conversely, if (i, j) ∈ S then for all λ ∈ Λ such that pλi 6= 0,

qξλij = pξip
−1
λi (pλxp

−1
λx)(p−1

λj)−1p−1
ξj ∈ N

for all x ∈ I, ξ ∈ Λ such that pξi, pξj , pλx 6= 0. Hence (i, pλi, λ) ρ (j, pλj , λ) and so by definition,
(i, j) ∈ Sρ. Hence S = Sρ. By a similar argument, T = Tρ.

Finally we wish to show that N = Nρ. By definition, a ∈ Nρ if and only if (1, a, 1) ρ (1, 1G, 1). This
is the case if and only if (by Lemma 1.17)

pξ1ap1x(pξ11Gp1x)−1 ∈ N

for some x ∈ I and ξ ∈ Λ such that pξ1, p1x 6= 0. This is true if and only if a ∈ N . Hence we have
N = Nρ.

9

Now we have proved that the non-universal congruences of a finite 0-simple semigroup correspond
bijectively to its linked triples, and we have come across some results which allow us to determine certain
properties of the congruence using its linked triple. In Chapter 2, we will describe how this theory can be
used to represent congruences computationally, and the advantages this gives us in finding low-complexity
algorithms which can be used to describe the properties of these congruences.

While in this paper we are concentrating on finite 0-simple semigroups, it should be noted that a very
similar representation exists for finite simple semigroups (Rees matrix semigroups), and the functions
described operate in almost exactly the same way, except for the removal of complications related to the
zero element. In this system, the universal congruence can also be represented by a linked triple, namely
(G, I × I,Λ× Λ). [1, p.90-91]

Since the theory is so similar, we will not explain the finite simple case in any more detail, and
instead we will restrict our arguments to semigroups with zero, apart from a brief excursion to Rees
matrix semigroups in Theorem 5.4. However, a future implementation of this theory in GAP could be
useful, and would be a logical extension of this project.

10

Chapter 2

Semigroup Congruences By Linked
Triple

Since the linked triples of a Rees 0-matrix semigroup are in bijective correspondence with its non-universal
congruences, we can describe a congruence ρ computationally by its associated linked triple Γ(ρ), rather
than by storing a set of pairs or a partition of the semigroup. Using this representation we can compute
some important properties of the congruence much faster than by these other representations.

In this section, we explain several of the algorithms for computing with these objects, as implemented
in GAP by the author of this paper, and where appropriate we provide pseudo-code or well-commented
GAP source code.

2.1 Describing Linked Triples Computationally

In order to store a semigroup congruence computationally by its linked triple, we need a function which
takes four arguments:

• a finite 0-simple Rees 0-matrix semigroup S,

• a group N ,

• a relation S, and

• a relation T ,

and returns an object which can be used as a semigroup congruence, but which is stored internally as a
linked triple (N,S, T).

The function will also need to carry out checks to ensure that these arguments describe a valid linked
triple. If G is the underlying group in the Rees 0-matrix semigroup S =M0[G; I,Λ;P], then

• N must be a normal subgroup of G,

• S must be an equivalence relation on the columns I, and

• T must be an equivalence relation on the rows Λ.

The relations S and T , which we traditionally view as sets of pairs in I × I and Λ×Λ, can be stored
more concisely as partitions of the set I or Λ: lists of lists of integers describing the equivalence classes.
For example, if there are 6 columns, and if S is the equivalence relation with classes {1, 3}, {2, 4, 5} and
{6}, then it might be represented as the list of lists[

[1, 3], [2, 4, 5], [6]
]
,

to use square-bracket notation for a list.
This function checks that these conditions are satisfied, then calls the function IsLinkedTriple (see

Section 2.3) to check that (N,S, T) is linked in the sense of Definition 1.11, and then creates the object.

11

2.2 Finding the Congruences of a Semigroup

Given a finite 0-simple Rees 0-matrix semigroup S over a group G, we wish for a function that returns a
list of all the congruences on S, including all non-universal congruences described by their linked triples,
and a special object for the universal congruence.

The basic operation of this function is not complicated: find all triples of the form (N,S, T) and if
they are linked, add them to a list. Then take the congruences Γ−1

(
(N,S, T)

)
and add the universal

congruence. This algorithm is shown in the following pseudo-code:

procedure CongruencesOfSemigroup(S)
C := ∅
for all N E G do

for all S ⊆ εI do
for all T ⊆ εΛ do

if IsLinkedTriple(S,N,S, T) then
Add (N,S, T) to C

end if
end for

end for
end for
Replace each triple in C with its congruence
Add UniversalSemigroupCongruence(S) to C
return C

end procedure

This algorithm is simple in itself. However, there is also the complication of calculating the normal
subgroups N , as well as εI and εΛ and their subsets.

To calculate all the normal subgroupsN E G, the attached implementation uses the NormalSubgroups
method currently implemented in GAP [4], which uses the method described in [6].

The relation εI ⊆ I × I is defined as the equivalence relation on the columns of the semigroup which
relates columns with zero entries in exactly the same places. That is,

(i, j) ∈ εI if and only if {λ ∈ Λ | pλi = 0} = {λ ∈ Λ | pλj = 0} .

To calculate this, we use the following algorithm:

procedure εI
εI :=

{
{1}, {2}, . . . , {n}

}
. where n = |I|

for i ∈ {1 . . . n} do
for j ∈ {i+ 1 . . . n} do

if (∀λ ∈ Λ) : pλi, pλj 6= 0 or pλi = pλj = 0 then
AddRelation(εI , i, j)

end if
end for

end for
return εI

end procedure

The row equivalence εΛ is calculated similarly. AddRelation takes an equivalence relation and two
elements a and b, and modifies the equivalence relation to combine the two classes containing a and b
(see Section 2.2.1). To calculate all the subsets S ⊆ εI and T ⊆ εΛ, we use another helper function
subpartitions (see Section 2.2.2).

12

2.2.1 Add a Relation

In order to create the “maximal” column and row relations εI and εΛ we combine various classes itera-
tively using the function AddRelation. In this case the equivalence relation ρ is stored as a partition of
the integers {1 . . . |I|}, and AddRelation(ρ, x, y) modifies the relation ρ so that the classes containing
x and y are combined. This algorithm is demonstrated in the following pseudo-code:

procedure AddRelation(ρ, x, y)
Let X be the first list in ρ containing x . In fact, it is the only such list
Let Y be the first list in ρ containing y
if X 6= Y then

X := X ∪ Y . Combine the congruence classes of x and y
ρ := ρ \ Y . Remove the redundant class whose elements are now in X

end if
end procedure

To find the complexity of this method, let n be the number of elements in the set. This algorithm
searches lists for the elements x and y, making no more than n comparisons for each. Then in comparing
the disjoint sets X and Y it needs to make precisely one comparison. Finally, combining the sets X and
Y cannot take more than n storage operations. Hence, AddRelation has linear order O(n).

2.2.2 Subpartitions

This function takes a partition of a set {1 . . . n} and returns a list of all the partitions which refine that
partition. For example, given the partition[

[1, 3], [2, 4, 5], [6]
]

subpartitions would return [[
[1, 3], [2, 4, 5], [6]

]
,[

[1, 3], [2, 4], [5], [6]
]
,[

[1, 3], [2, 5], [4], [6]
]
,[

[1, 3], [2], [4, 5], [6]
]
,[

[1, 3], [2], [4], [5], [6]
]
,[

[1], [2, 4, 5], [3], [6]
]
,[

[1], [2, 4], [3], [5], [6]
]
,[

[1], [2, 5], [3], [4], [6]
]
,[

[1], [2], [3], [4, 5], [6]
]
,[

[1], [2], [3], [4], [5], [6]
]]

,

the list of all “subpartitions” of the argument. The algorithm for doing this is best demonstrated by the
following high-level GAP implementation:

s u b p a r t i t i o n s := function (part)
local l ;
Replace each c l a s s wi th a l i s t o f a l l p a r t i t i o n s o f t h a t c l a s s
l := L i s t (part , P a r t i t i o n s S e t) ;

Produce a l l the combinat ions o f p a r t i t i o n s o f c l a s s e s
l := Cartes ian (l) ;

Concatenate t h e s e l i s t s to produce complete p a r t i t i o n s o f the s e t
l := L i s t (l , Concatenation) ;

F i n a l l y s o r t each o f t h e s e i n t o the canonica l order o f i t s new c l a s s e s
l := L i s t (l , SSor tedL i s t) ;
return l ;

end ;

13

2.3 Is a Triple Linked?

By definition, a triple (N,S, T) is linked only if it fulfills the three conditions required in Definition 1.11.
The IsLinkedTriple function tests these conditions, and returns a boolean value for whether the triple
is linked. The three conditions can be tested together with the following algorithm:

Require: S =M0[G; I,Λ;P], N E G, S ⊆ εI , T ⊆ εΛ.
procedure IsLinkedTriple(S,N,S, T)

. First, the column relation S
for all equivalence classes Sa of S do

Let {i1, i2 . . . in} be the elements of Sa
. Do all columns in Sa have zero in the same rows?
for k = 2 to n do

for λ ∈ Λ do
if pλi1 = 0 xor pλik = 0 then

return false
end if

end for
end for
. Is qλµij ∈ N for every i, j ∈ Sa?
for i, j ∈ Sa do

for all λ, µ ∈ Λ such that pλi, pµi 6= 0 do . and therefore pλj , pµj 6= 0
if pλip

−1
µi pµjp

−1
λj /∈ N then

return false
end if

end for
end for

end for

. Second, the row relation T
for all equivalence classes Ta of T do

Let {λ1, λ2 . . . λn} be the elements of Ta
. Do all rows in Ta have zero in the same columns?
for k = 2 to n do

for i ∈ I do
if pλ1i = 0 xor pλki = 0 then

return false
end if

end for
end for
. Is qλµij ∈ N for every λ, µ ∈ Ta?
for λ, µ ∈ Ta do

for all i, j ∈ I such that pλi, pλj 6= 0 do . and therefore pµi, pµj 6= 0
if pλip

−1
µi pµjp

−1
λj /∈ N then

return false
end if

end for
end for

end for
end procedure

14

2.4 Equality

We need a function which compares two congruences ρ1 and ρ2 and reports whether they are equal. For
two congruences by linked triple, this is simple:

Let ρ1 have the linked triple (N1,S1, T1) and ρ2 have the linked triple (N2,S2, T2). Now ρ1 = ρ2 if
and only if

• ρ1 and ρ2 are congruences of the same semigroup S,

• N1 = N2,

• S1 = S2, and

• T1 = T2.

2.5 Pair Inclusion

We have been storing a congruence ρ by its linked triple. However, for this representation to be useful
we must also be able to view it as a set of pairs in S×S, and to this end we provide an inclusion function
which tests whether a pair (x, y) ∈ S × S is in ρ – that is, whether x is ρ-related to y.

Since the linked triples of a finite 0-simple Rees 0-matrix semigroup over a group describe precisely
the non-universal congruences, the congruence ρ with linked triple (N,S, T) contains no pair including
zero apart from (0, 0).

If x, y 6= 0 then we can write x = (i, a, λ) and y = (j, b, µ). To decide whether (x, y) ∈ ρ, we need to
use all three parts of the linked triple, as in the conditions for ρ-congruence in Theorem 1.16. Firstly, it
is necessary that

(i, j) ∈ S and (λ, µ) ∈ T .

If either of these conditions is not satisfied, then (x, y) /∈ ρ. However, if these are both true, then it gives
us an important piece of information which is necessary for the next test: since S ⊆ εI , we know that
the columns i and j have zero entries in precisely the same rows; and since T ⊆ εΛ, we know that the
rows λ and µ have zero entries in precisely the same columns.

Let k ∈ I be any column of the matrix such that pλk 6= 0: hence pµk 6= 0 as well. Similarly let ν ∈ Λ
be any row such that pνi 6= 0: hence pνj 6= 0 as well. Recall that P has no rows or columns which are
all-zero, so these choices will always be possible. Now we require that the two elements

pνi · a · pλk and pνj · b · pµk

must satisfy the condition
(pνi a pλk) · (pνj b pµk)−1 ∈ N.

This is the same as deciding whether they are in the same coset of N with respect to G.
If all three of these tests return true (the three conditions in Theorem 1.16) this is sufficient to

determine that (x, y) ∈ ρ. This algorithm is shown in the following pseudo-code:

Require: S =M0[G; I,Λ;P]
procedure In((x, y), ρ)

if x = y then . First a special case for 0
return true

else if x = 0 or y = 0 then
return false

end if
Let (N,S, T) be the linked triple of ρ
Let x = (i, a, λ)
Let y = (j, b, µ)
if (i, j) /∈ S or (λ, µ) /∈ T then

return false

15

end if
Let k be the first column in I such that pλk 6= 0 . and therefore pµk 6= 0
Let ν be the first row in Λ such that pνi 6= 0 . and therefore pνj 6= 0
if (pνi a pλk) · (pνj b pµk)−1 ∈ N then

return true
else

return false
end if

end procedure

Note that for this algorithm, k and ν need not be the first column and row with the specified
condition, but could be any column and row with that condition. However, the first column and row are
reasonable canonical examples, and in Section 3 we will see other methods for which this choice must be
deterministic.

2.6 Elements of a Congruence Class

This function takes a congruence ρ and an element x ∈ S and returns the elements of x/ρ – that is, a
list of all elements which are ρ-related to x. If x = 0, then it will return only {0}. Otherwise, we can
define x equal to some (i, a, λ), and the function will return all elements (j, b, µ) such that i S j, λ T µ,
and (pνi a pλk) · (pνj b pµk)−1 ∈ N (as in Section 2.5 and Theorem 1.16). The GAP system refers to
methods of this type by the name ImagesElm – the “images” of an element x.

Require: S =M0[G; I,Λ;P]
procedure ImagesElm(x, ρ)

Let (N,S, T) be the linked triple of ρ
if x = 0 then

return {0}
end if
Let x = (i, a, λ)
Let k be the first column in I such that pλk 6= 0
Let ν be the first row in Λ such that pνi 6= 0
Rx := ∅
for j ∈ i/S do

for µ ∈ λ/T do
for n ∈ Na do

b := p−1
νj n pνi a pλk p

−1
µk /

Add (j, b, µ) to Rx
end for

end for
end for
return Rx

end procedure

In the line marked /, we use the fact that we want to find every group element b such that

pνjbpµk ∈ Npνiapλk.

Hence, for every n ∈ N we calculate what that b must be and add it to the list.

16

2.7 Join

Given congruences (or equivalences) ρ1 and ρ2, the join ρ1 ∨ρ2 is defined as the smallest congruence (or
equivalence) ρ′ such that ρ1 ∪ ρ2 ⊆ ρ′.

To calculate ρ1 ∨ ρ2 with the linked triple representation, let (N1,S1, T1) and (N2,S2, T2) be the
linked triples of ρ1 and ρ2 respectively. By Lemma 3.6.1 in [1, p.91], the linked triple of ρ1 ∨ ρ2 is

(N1N2,S1 ∨ S2, T1 ∨ T2).

To find N1N2, we find a generating set for each of N1 and N2. Combining these sets gives a set of
generators for N1N2. To find S1 ∨ S2, we allow the columns in I to be marked or unmarked. Initially
all the columns are unmarked. Now we iterate through the columns: if a column i is marked, we ignore
it; if not, then find the union of i/S1 and i/S2, and add it to a list of “blocks”, the equivalence classes
of S1 ∨ S2. All of the columns in this new block, we now mark to avoid repeats. T1 ∨ T2 is calculated in
a similar fashion.

This algorithm is shown in the following pseudo-code:

procedure Join(ρ1, ρ2)
Let (N1,S1, T1) be the linked triple of ρ1

Let (N2,S2, T2) be the linked triple of ρ2

Let X1 be a set of generators for N1

Let X2 be a set of generators for N2

N1N2 := 〈X1, X2〉

CI := ∅
for i ∈ I do

if i is marked then
continue

end if
Bi := i/S1 ∪ i/S2

Mark elements in Bi
Add Bi to CI

end for
Let S1 ∨ S2 be the equivalence with classes CI

CΛ := ∅
for λ ∈ Λ do

if λ is marked then
continue

end if
Bλ := λ/T1 ∪ λ/T2

Mark elements in Bλ
Add Bλ to CΛ

end for
Let T1 ∨ T2 be the equivalence with classes CΛ

Let ρ have linked triple (N1N2,S1 ∨ S2, T1 ∨ T2)
return ρ

end procedure

2.8 Meet

Lemma 2.1. Given congruences ρ1 and ρ2, the intersection ρ1 ∩ ρ2 is also a congruence.

Proof. Let ρ′ = ρ1 ∩ ρ2, and let x ρ′ y and u ρ′ v. Hence x ρ1 y, x ρ2 y, u ρ1 v, and u ρ2 v. Since ρ1

and ρ2 are congruences, xu ρ1 yv and xu ρ2 yv. Hence xu ρ′ yv, and so ρ′ is a congruence.

17

Since ρ1 ∩ ρ2 is the largest congruence which is a subset of both ρ1 and ρ2, we call it the meet of ρ1

and ρ2, and we may write it ρ1 ∧ ρ2.
To calculate ρ1 ∧ ρ2 with the linked triple representation, Let (N1,S1, T1) and (N2,S2, T2) be the

linked triples of ρ1 and ρ2 respectively. By Lemma 3.6.1 in [1, p.91], the linked triple of ρ1 ∧ ρ2 is

(N1 ∩N2,S1 ∩ S2, T1 ∩ T2).

To find N1 ∩N2, the current implementation relies on the GAP method for finding the intersection
of two groups.[4] S1 ∩ S2 and T1 ∩ T2 are found using a method identical to that for the join in Section
2.7, except that we find the intersection of the row and column classes instead of the union.

This method is shown in the following pseudo-code:

procedure Join(ρ1, ρ2)
Let (N1,S1, T1) be the linked triple of ρ1

Let (N2,S2, T2) be the linked triple of ρ2

Calculate N1 ∩N2

CI := ∅
for i ∈ I do

if i is marked then
continue

end if
Bi := i/S1 ∩ i/S2

Mark elements in Bi
Add Bi to CI

end for
Let S1 ∩ S2 be the equivalence with classes CI

CΛ := ∅
for λ ∈ Λ do

if λ is marked then
continue

end if
Bλ := λ/T1 ∩ λ/T2

Mark elements in Bλ
Add Bλ to CΛ

end for
Let T1 ∩ T2 be the equivalence with classes CΛ

Let ρ have linked triple (N1 ∩N2,S1 ∩ S2, T1 ∩ T2)
return ρ

end procedure

2.9 Universal Congruences

As mentioned before, the linked triples of a semigroup S describe its non-universal congruences. For
any semigroup there also exists the universal semigroup S × S, which must also be considered. For
completeness, all methods above which apply to S × S have been implemented in GAP, though most
of them are trivial. Another object is implemented which represents U , the single universal congruence
class of S × S.

For the universal semigroup congruence S × S and a semigroup congruence by linked triple ρ, the
following results are defined:

• S × S = S × S,

• S × S 6= ρ,

18

• (x, y) ∈ S × S for all x, y ∈ S,

• ImagesElm(S × S, x) returns all the elements of S,

• NrCongruenceClasses(S × S) = 1,

• S × S ∨ S × S = S × S,

• S × S ∨ ρ = S × S,

• S × S ∧ S × S = S × S,

• S × S ∧ ρ = ρ,

• EquivalenceClasses(S × S) = {U},

• EquivalenceClassOfElement(S × S, x) = U for all x ∈ S,

• x ∈ U for all x ∈ S,

• U · U = U in S/(S × S),

• |U| = |S|,

• U = U ,

• GeneratingPairsOfCongruence(S×S) = {(x, s1) | ∀x ∈ S} for some fixed s1 ∈ S (see Section
4.2).

19

Chapter 3

Congruence Classes By Class Triple

Now that we have a way of describing a congruence ρ with its linked triple, and a way of testing whether
two elements are ρ-related using that linked triple, we now seek a concise way to describe a congruence
class of ρ.

Definition 3.1. Let S = M0[G; I,Λ;P] be a finite 0-simple Rees 0-matrix semigroup; let ρ be a non-
universal congruence on S with linked triple (N,S, T). A class triple of ρ is any triple

(Nl, i/S, λ/T),

where

• i/S is an equivalence class of S;

• λ/T is an equivalence class of T ;

• Nl is a coset of N in G.

Theorem 3.2. The class triples of ρ correspond bijectively to its non-zero congruence classes.

Proof. Let x = (i, a, λ) be an arbitrary non-zero element of S. Let k ∈ I be the first column in P such
that pλk 6= 0, and let ν ∈ Λ be the first row in P such that pνi 6= 0. We define Cx as the class triple

(Nl, i/S, λ/T),

where l = pνi · a · pλk.
We now need only to show that for x, y ∈ S, (x, y) ∈ ρ if and only if Cx = Cy.
(⇒): Let (x, y) ∈ ρ such that x = (i, a, λ) and y = (j, b, µ). By Lemma 1.14, i/S = j/S and

λ/T = µ/T . Now, since (i, j) ∈ εI and (λ, µ) ∈ εΛ, the first non-zero column k will be the same
for λ and µ, and the first non-zero row ν will be the same for i and j. Therefore by Theorem 1.16,
pνiapλk(pνjbpµk)−1 ∈ N , so the two elements pνi ·a ·pλk and pνj · b ·pµk lie in the same coset of N , which
is called Nl. Hence Cx = Cy.

(⇐): Let x = (i, a, λ) and y = (j, b, µ) be chosen such that Cx = Cy. Hence i/S = j/S and
λ/T = µ/T , so (i, j) ∈ S and (λ, µ) ∈ T . Now since ν and k can be chosen consistently, pνi · a · pλk
and pνj · b · pµk lie in the same coset of N , and again we have that pνiapλk(pνjbpµk)−1 ∈ N , and so
(x, y) ∈ ρ.

Note that here, unlike the method for pair inclusion (see Section 2.5) we cannot choose k and ν
arbitrarily. In order to generate the same class triple from two congruent elements x and y, we must be
consistent in which k and ν are used; choosing the first valid column and row from the left and top of the
matrix respectively is deterministic, and can be relied upon to be invariant for elements whose columns
and rows are S- and T -related.

Throughout this section we will use the notation x/ρ to describe a congruence class of ρ, defining it
in terms of a representative element x. However, the use of this notation does not imply that we have
calculated what x actually is; x/ρ is simply an arbitrary congruence class, unless x is already defined.
A similar rule should be applied to column and row equivalence classes i/S and λ/T , and cosets Nl or
Na.

20

3.1 Describing Class Triples Computationally

In order to store a class triple in a computational algebra system, we need a function which takes four
arguments:

• a congruence ρ defined by its linked triple (N,S, T)

• a coset Na,

• a column class i/S, as an integer,

• a row class λ/T , as an integer,

and returns a non-zero congruence class of ρ, which we can store internally as the class triple (Na, i/S, λ/T).
The function should first carry out checks to ensure that the supplied arguments make sense. Firstly,

it is necessary to check that the coset Na is indeed a coset of N with respect to the Rees 0-matrix
semigroup’s underlying group G. Secondly, note that since S and T are stored as partitions (lists of
lists), the classes i/S and λ/T can be stored simply as an integer which describes the position of that
class in the partition; we must therefore test that these numbers are at least 1, and are no larger than
the number of classes in their respective equivalence relations.

Once these checks are carried out, a representative for the class should be calculated with Canoni-
calRepresentative, and it should be stored along with the class triple.

3.2 Finding the Classes of a Congruence

Now that we have a way of describing the classes of a congruence, we give a function that returns a
list of all congruence classes of a congruence ρ. This is done by finding all cosets of N , all equivalence
classes of S, and all equivalence classes of T , and then combining them into every possible class triple
(Na, i/S, λ/T) and applying using those triples to produce congruence class objects. Finally the zero
class 0/ρ must be added.

procedure CongruenceClasses(ρ)
Let (N,S, T) be the linked triple of ρ
Cρ := ∅
for all equivalence classes i/S of S do . where i ∈ I is a representative of i/S

for all equivalence classes λ/T of T do . where λ ∈ Λ is a representative of λ/T
for all cosets Na of N in G do . where a ∈ G is a representative of Na

Add (Na, i/S, λ/T) to Cρ
end for

end for
end for
Replace each triple in Cρ by its congruence class
Add 0/ρ to Cρ
return Cρ

end procedure

3.3 Number of Congruence Classes

For a subgroup H of a group G, we define its index |G : H| as the number of cosets of H in G. Similarly,
for an equivalence relation R on a set X, let us define the index |X : R| to be the number of equivalence
classes of R in X.

We define a function NrCongruenceClasses, which takes a congruence ρ and returns |S : ρ|, the
number of congruence classes ρ has in its semigroup S.

21

Let ρ have the linked triple (N,S, T). Since the (non-zero) congruence classes of ρ correspond
bijectively to the class triples, and since zero has its own single class,

|S : ρ| =
(
|G : N | · |I : S| · |Λ : T |

)
+ 1.

For example, if N has 6 cosets in G, S has 2 equivalence classes in I, and T has 5 equivalence classes
in Λ, then ρ has

(6× 2× 5) + 1 = 61

congruence classes in S.

3.4 Congruence Class of an Element

We define a function, CongruenceClassOfElement, which takes as parameters a congruence ρ over
a Rees 0-matrix semigroup S specified by a linked triple, and an element x ∈ S.

If x = 0, then we simply return 0/ρ, the class containing only 0. Otherwise, x has the form (i, a, λ),
and we can construct its class triple Cx by the method described in the proof of Theorem 3.2. This
triple can then be used to describe the congruence class object, using the function defined in Section 3.1,
“RZMSCongruenceClassByLinkedTriple”.

This algorithm can be seen in the following pseudo-code:

procedure CongruenceClassOfElement(ρ, x)
if x = 0 then

return 0/ρ
end if
Let (N,S, T) be the linked triple of ρ
Let x = (i, a, λ)
Let k be the first column in I such that pλk 6= 0
Let ν be the first row in Λ such that pνi 6= 0
l := pνi · a · pλk
return RZMSCongruenceClassByLinkedTriple(ρ,Nl, i/S, λ/T)

end procedure

3.5 Class Inclusion

This function takes an element y ∈ S and a congruence class x/ρ, and determines whether y ∈ x/ρ using
class triples. The logic is much the same as determining whether two elements x and y are ρ-related as
in Section 2.5, but without using an explicit element x.

procedure In(y, x/ρ)
if y = 0 then

if x/ρ = 0/ρ then
return true

else
return false

end if
end if
Let y = (j, b, µ)
Let (Nl, i/S, λ/T) be the class triple of x/ρ
Let k be the first column in I such that pµk 6= 0
Let ν be the first row in Λ such that pνj 6= 0
if pνj b pµk ∈ Nl and j ∈ i/S and µ ∈ λ/T then

22

return true
else

return false
end if

end procedure

3.6 Class Multiplication

If we have a semigroup S with a congruence ρ, we can of course form a new semigroup, the quotient S/ρ,
with elements the congruence classes of ρ, and multiplication given by the rule

(x/ρ)(y/ρ) = (xy)/ρ

for x, y ∈ S. This multiplication can be done computationally simply by multiplying the class repre-
sentatives x and y and applying the function CongruenceClassOfElement to the product xy (see
Section 3.4).

3.7 Size of a Class

This function returns the number of elements in an equivalence class x/ρ.
If x/ρ is the zero class 0/ρ, then clearly it has size 1. Otherwise it has a class triple (Nl, i/S, λ/T).

An element is in the class only if it has a column in i/S and a row in λ/T . It must also have a group
element which maps to the coset Nl. Nl has the same size as the normal subgroup N , so

|x/ρ| = |N | · |i/S| · |λ/T |.

3.8 Canonical Representative

As mentioned in Section 3.1, we should have a method to calculate a representative of a congruence class
using its class triple. CanonicalRepresentative is a function that takes a congruence class specified
by a class triple and returns a representative element of that class which can be used to identify the class
uniquely.

Consider the congruence class x/ρ. We wish to find some x1 ∈ x/ρ which can represent x/ρ canoni-
cally. If x/ρ = 0/ρ, then we must of course choose x1 = 0. Otherwise, x/ρ has class triple (Nl, i/S, λ/T)
and we must choose

x1 = (i1, a1, λ1)

for some i1 ∈ I, a1 ∈ G,λ1 ∈ Λ.
It is fairly easy to choose a canonical i1: simply take the furthest left column in i/S. Similarly let λ1

be the row in λ/T nearest to the top of the matrix. Now, as in Section 2.5, we can define k as the first
column such that pλ1k 6= 0, and we can define ν as the first row such that pνi1 6= 0.

To ensure canonicity, we should choose a canonical representative l1 of the coset Nl. We do not
include details of how to do this here, but GAP includes a CanonicalRightCosetElement function
which fulfills the purpose.[4]

We now need to pick some canonical a1 such that pνi1 · a1 · pλ1k ∈ Nl. The formula

a1 = p−1
νi1
· l1 · p−1

λ1k

suffices, and so we have our representative (i1, a1, λ1).

23

Chapter 4

Conversion

It may certainly be useful to convert between our linked triple representation of congruences, and other
representations. In this section we present a method for finding the linked triple of a congruence, and
a method of finding generating pairs from a linked triple. In this way we can move to and from our
representation as necessary.

4.1 Generating Pairs to Linked Triple

We start with a function which takes a semigroup congruence (possibly stored as a set of generating
pairs) and returns a congruence which is identical mathematically, but is stored as a linked triple. [1,
p.84] gives us a simple method for calculating the linked triple of a congruence:

For a congruence ρ on a finite 0-simple Rees 0-matrix semigroup S = M0[G; I,Λ;P], let S be the
relation on the columns I such that (i, j) ∈ S if and only if

(i, p−1
λi , λ) ρ (j, p−1

λj , λ)

for every row λ ∈ Λ such that pλi 6= 0 (and therefore pλj 6= 0).
Similarly, let T be the relation on the columns Λ such that (λ, µ) ∈ T if and only if

(i, p−1
λi , λ) ρ (i, p−1

µi , µ)

for every column i ∈ I such that pλi 6= 0 (and therefore pµi 6= 0).
Next, choose some k ∈ I and ν ∈ Λ such that pνk 6= 0. Let

N = {a ∈ G | (k, a, ν) ρ (k, 1, ν)},

and we have (N,S, T), the linked triple of ρ.
Note that, since no row of P is entirely zero, we may always choose ν = 1, and there will be some

k ∈ I such that pνk 6= 0.
AsRZMSCongruenceByLinkedTriple is a GAP implementation of this function, which simply carries

out the operation above, and then uses the resulting triple to create a congruence object.

4.2 Linked Triple to Generating Pairs

This function, which we call GeneratingPairsOfCongruence, takes a congruence ρ by linked triple,
and returns a list of pairs of elements which can be used to generate the congruence. This list of pairs
cannot be relied upon to be minimal, and may contain many more pairs than are necessary to generate
the congruence, but it allows for a congruence ρ to be expressed in a different form, for applications
which are not well-adapted to the use of linked triples.

The theory is much the same as in Section 4.1, but applied in reverse:
Given the linked triple (N,S, T), there are pairs which are a consequence of N , pairs which are a

consequence of S, and pairs which are a consequence of T . We list all of these in turn.

24

As in the previous section, we choose arbitrary k ∈ I and ν ∈ Λ such that pνk 6= 0 (again we may
always choose ν = 1). Now for every n ∈ N , we add the pair(

(k, n, ν), (k, 1, ν)
)

to our list of generating pairs.
Next we consider the column relation S. We have that (i, p−1

λi , λ) ρ (j, p−1
λj , λ) for each (i, j) ∈ S. To

generate all these, for each class i/S we fix some i1 ∈ i/S and then for each other j ∈ i/S add the pair(
(i1, p

−1
λi1
, λ), (j, p−1

λj , λ)
)

for each λ ∈ Λ such that pλi1 6= 0 (and hence pλj 6= 0). A similar method is applied to the row relation
T , and we have a full set of generating pairs.

This algorithm is shown in the following pseudo-code:

procedure GeneratingPairsOfCongruence(ρ)
R := ∅
Let (N,S, T) be the linked triple of ρ

Choose k ∈ I, ν ∈ Λ such that pνk 6= 0
for n ∈ N do

Add
(
(k, n, ν), (k, 1, ν)

)
to R

end for

for all equivalence classes i/S of S do
Fix i1 ∈ i/S
for j ∈ (i/S) \ {i1} do

for λ ∈ Λ such that pλi1 6= 0 do . and hence pλj 6= 0
Add

(
(i1, p

−1
λi1
, λ), (j, p−1

λj , λ)
)

to R
end for

end for
end for

for all equivalence classes λ/T of T do
Fix λ1 ∈ λ/T
for µ ∈ (λ/T) \ {λ1} do

for i ∈ I such that pλ1i 6= 0 do . and hence pµi 6= 0
Add

(
(i, p−1

λ1i
, λ1), (i, p−1

µi , µ)
)

to R
end for

end for
end for

return R
end procedure

25

Chapter 5

Congruence-Free Semigroups

The theory which we have used so far largely applies only to finite 0-simple semigroups. Luckily however,
we can extend this theory to find a quick algorithm for determining whether a given semigroup S is
congruence-free; this algorithm works for any finite semigroup.

Definition 5.1. A semigroup is congruence-free if it has no congruences other than the universal
congruence S × S and the trivial congruence ∆S = {(x, x) |x ∈ S}. [1, p.93]

First we consider the special case where |S| ≤ 2.

Theorem 5.2. Any semigroup S with order 1 or 2 is congruence-free.

Proof. If |S| = 1 then the only congruence is {(1, 1)} = ∆S = S × S, so S is congruence-free.
If |S| = 2, let us define a congruence ρ on S. Let {x, y} be the elements of S. By reflexivity,

(x, x), (y, y) ∈ ρ. If we add an arbitrary element (x, y) to ρ then by symmetry we must also add (y, x),
and we have ρ = S × S. Hence ∆S and S × S are the only congruences in S.

Lemma 5.3. Any finite congruence-free semigroup is completely simple or completely 0-simple.

Proof. Let S be a semigroup which is not simple or 0-simple, so that S has a proper ideal I. We can
now define a relation ρI by

ρI = (I × I) ∪∆S .

We can show that ρI is a congruence as follows:

(R) For each x ∈ S, the pair (x, x) ∈ ρI , so ρI is reflexive.

(S) For a pair (x, y) ∈ ρI , either x = y or x, y ∈ I. In either case, (y, x) ∈ ρI and so ρI is symmetric.

(T) Let (x, y), (y, z) ∈ ρI . Either x = y = z (in which case x = z), or x, y ∈ I (in which case z ∈ I). In
either case (x, z) ∈ ρI , so ρI is transitive.

(C) Let (x, y) ∈ ρI and a ∈ S. It may be that x = y, in which case ax = ay and xa = ya. Otherwise
x, y ∈ I, and so ax, ay, xa, ya ∈ I since I is an ideal. In either case, we have (ax, ay), (xa, ya) ∈ ρI .

So ρI is a congruence. Since I is a proper ideal, ρI is not equal to ∆S or S × S, and so S is not
congruence-free.

Hence every congruence-free semigroup is simple or 0-simple. Observe that any finite (0-)simple
semigroup is completely (0-)simple, and the statement follows.

We divide all finite semigroups S of order greater than 2 into two cases: either S has a zero, or S has
no zero.

Theorem 5.4. Let S be a finite semigroup without zero, and |S| > 2. S is congruence-free if and only
if S is a simple group.

26

Proof. (⇒): Let S be a finite congruence-free semigroup without zero, with |S| > 2. By Lemma 5.3, we
know that S is a completely simple semigroup: hence S is isomorphic to some Rees matrix semigroup
(without zero) M[G; I,Λ;P]. We have two congruences: ∆S with linked triple (1,∆I ,∆Λ); and S × S
with linked triple (G, I × I,Λ× Λ).

Assume that N is a proper normal subgroup of G. Hence we have the triple (N,∆I ,∆Λ): since
(i, j) ∈ ∆I or (λ, µ) ∈ ∆Λ only if i = j or λ = µ respectively, and qλλij = qλµii = 1, this triple satisfies
Definition 1.11, and it is linked. Thus we have another congruence on S, a contradiction. Hence G has
no proper normal subgroups, so it must be a simple group, or the trivial group.

If G is trivial, then |S| = |I| × |Λ|. Since |S| > 2, either |I| = |Λ| = 2, or at least one of I and Λ has
more than 2 elements. If |I| = |Λ| = 2 we have the linked triples (1,∆I ,Λ×Λ) and (1, I × I,∆Λ) which
represent non-trivial congruences, a contradiction. Alternatively, if one of I and Λ has size greater than
2, then there exists an equivalence S or T such that ∆I ⊂ S ⊂ I × I or ∆Λ ⊂ T ⊂ Λ× Λ, and so there
is a non-trivial congruence given by (1,S,Λ× Λ) or (1, I × I, T), another contradiction.

Hence G is a simple group. Now, if |I| or |Λ| is greater than 1, then we have the linked triple
(G,∆I ,∆Λ) which is not equal to (1,∆I ,∆Λ) or (G, I × I,Λ × Λ), and we have another congruence.
Hence P must be a 1× 1 matrix, and so S ∼= G, so S is a simple group. [1, p.94]

(⇐): Conversely, let S be a finite simple group with |S| > 2. Clearly S is isomorphic to the Rees
matrix semigroup M[S; I,Λ;P] where |I| = |Λ| = 1 and p11 = 1S . Since S is a simple group, there are
no normal subgroups except 1 and S. Hence the only linked triples for S are (1,∆I ,∆Λ) and (S,∆I ,∆Λ).
Hence S has only two congruences and is congruence-free.

Theorem 5.5. If S is a finite semigroup with zero, then S is congruence-free if and only if S is iso-
morphic to a Rees 0-matrix semigroup M0[G; I,Λ;P] where G is the trivial group and P has no two
identical rows and no two identical columns.

Proof. (⇒): Let S be a finite congruence-free semigroup with zero. By Lemma 5.3, S must be completely
0-simple, and so by Theorem 1.10 it is isomorphic to some M0[G; I,Λ;P] with group G and regular P .

The trivial congruence ∆S has linked triple (1,∆I ,∆Λ). Consider the triple (G,∆I ,∆Λ): since (i, j) ∈
∆I or (λ, µ) ∈ ∆Λ only if i = j or λ = µ respectively, and qλλij = qλµii = 1, the triple satisfies Definition
1.11, and it is linked. Hence for S to be congruence-free, we must have (1,∆I ,∆Λ) = (G,∆I ,∆Λ), and
so G = 1.

Now, each matrix entry pλi is equal to 1 or 0, and each relevant qλµij = 1. Hence the triple (1, εI , εΛ)
is linked, and so to be congruence-free we must have (1,∆I ,∆Λ) = (1, εI , εΛ), and so εI = ∆I and
εΛ = ∆Λ. This means that no two rows or columns have zeros in the same places, which, over the range
{0, 1}, is identical to saying that no two rows or columns are equal.

(⇐): Let S be a finite Rees 0-matrix semigroup M0[G; I,Λ;P] with G trivial and P having no two
identical rows or columns. Since P is only over the elements {0, 1}, no two rows or columns have zeros
in the same place, and so εI = ∆I and εΛ = ∆Λ. Hence the only linked triple is (1, εI , εΛ), and so S is
congruence-free. [1, p.93-94]

Now that we have considered all finite semigroups, we have an algorithm which decides whether a
finite semigroup is congruence-free:

Require: S is finite
procedure IsCongruenceFree(S)

if |S| ≤ 2 then
return true

end if
if S has a zero then

if S is 0-simple then
Find M0[G; I,Λ;P] ∼= S
for i ∈ {1 . . . |I| − 1} do

for j ∈ {i+ 1 . . . |I|} do
if Row i = Row j of P then

return false

27

end if
end for

end for
return true

else
return false

end if
else

if S is a simple group then
return true

else
return false

end if
end if

end procedure

28

Chapter 6

Evaluation

In this chapter, we will show the practical value of these functions, and briefly discuss future directions
in which this work could be continued.

6.1 Benchmarking

It was stated in the motivation of this project (see Section 1.1) that computing with congruences using
linked triples is computationally easier, and therefore much faster, than by using the representation that
currently exists in GAP. We now present two experiments in the GAP system in which a property of a
semigroup congruence is calculated – first using the generating pairs representation, and then using the
new linked triples representation – and the computation times are compared.

We began by constructing a Rees 0-matrix semigroup R from the principal factor of a random D-class
of the full transformation semigroup T5:

gap> S := Ful lTransformationSemigroup (5) ; ;
gap> R := Pr inc ipa lFac to r (Random(DClasses (S))) ;
<Rees 0−matrix semigroup 25x10 over Group ([(1 , 4 , 2) , (1 , 2)])>

We then used CongruencesOfSemigroup (see Section 2.2) to find a list of all the congruences of R.
The congruences are displayed along with a representation of their linked triple (except the universal
congruence, a special case):

gap> congs := CongruencesOfSemigroup (R) ;
[<u n i v e r s a l semigroup congruence>,
<RZMS congruence by l i nked t r i p l e (1 ,25 ,10)> ,
<RZMS congruence by l i nked t r i p l e (3 ,25 ,10)> ,
<RZMS congruence by l i nked t r i p l e (S3 ,25 ,10)>]

We then focused on the third congruence in the list: the congruence with linked triple displayed as
(3,25,10) – that is, N = C3, S has 25 equivalence classes, and T has 10 equivalence classes. We called
this congruence cong, and then we found its generating pairs representation (see Section 4.2) and called
it pcong:

gap> cong := congs [3] ;
<RZMS congruence by l i nked t r i p l e (3 ,25 ,10)>
gap> pcong := AsSemigroupCongruenceByGeneratingPairs (cong) ;
<semigroup congruence with 3 gene ra t ing pa i r s>

Now we have two objects, cong and pcong, which represent the same congruence. Our first test was
to find their equivalence classes using EquivalenceClasses(cong) and EquivalenceClasses(pcong).
This test was carried out three times, and the times measured; the generating pairs method returned a
result in around 52 minutes each time (51m40s, 52m16s and 52m24s respectively), whereas the linked
triples method consistently returned a result in less than one tenth of a second.

29

Next the method for finding the elements of a congruence class was considered (see Section 2.6). Con-
tinuing from the previous setup, we defined a Rees 0-matrix semigroup element x := (24, (1, 4), 4) ∈ R,
and then we found the elements of its congruence class by calling ImagesElm(cong, x) and ImagesElm(pcong,

x). Again the test was carried out three times; in each case the generating pairs representation took
around 55 minutes to return a result (54m26s, 55m35s and 57m34s respectively), while again the linked
triples method returned a result each time in less than one tenth of a second.

6.2 Extensions

As discussed at the end of Chapter 1, the congruences on finite simple semigroups can be represented
in almost precisely the same way as finite 0-simple semigroups, but with the removal of complications
related to the zero element.[1, p.90-91] To implement and document this would be a natural continuation
of this project.

A more substantial extension would be to look into the possibility of extending this theory to represent
the congruences of arbitrary semigroups. Furthermore, more consideration could be given to how these
congruences describe quotient semigroups and homomorphic images: by the First Isomorphism Theorem
(Theorem 1.5.2 in [1, p.23]) congruences and homomorphisms are in a way “equivalent”, and it would be
good to have implementations of methods which use this link to provide quick calculations on a wider
range of objects.

30

Bibliography

[1] Howie, J.M., Fundamentals of Semigroup Theory, Oxford Science Publications, 1995, 3.5-3.7, 83-95.

[2] Holt, D.F., Eick, B., O’Brien, E.A, Handbook of Computational Group Theory, Chapman & Hall/CRC
Press, 2005.

[3] Ruškuc, N., Lecture Notes, MT5823 Semigroups, University of St Andrews, 2014.

[4] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.4 ; 2014,
(http://www.gap-system.org).

[5] Mitchell, J.D., Semigroups - GAP package, Version 2.0, April 2014.

[6] Hulpke, A., Computing Normal Subgroups, Proceedings of the 1998 International Symposium on
Symbolic and Algebraic Computation (Rostock), ACM, New York, 1998, 194198 (electronic)

31

