Computing with Semigroup Congruences

Michael Torpey

5th September 2014

Abstract

In any branch of algebra, congruences are an important topic. An algebraic ob-
ject’s congruences describe its homomorphic images and quotients, and therefore
they are an important part of the object’s structure. However, in many branches
of algebra, congruences are not studied directly, but the necessary theory is built
up using other objects which are more readily understandable or which simplify
the computation of important attributes. For example, group congruences are
studied indirectly using normal subgroups, and ring congruences correspond to
two-sided ideals.

In semigroup theory, in general, congruences are studied directly. However,
certain categories of semigroups do have convenient properties which allow us
to describe their congruences in other ways. For instance, a previous report by
this author describes how to represent the congruences of 0-simple semigroups
using linked triples.

In this report we consider several representations of semigroup congruences
and how they can be used in computation: congruences on inverse semigroups
may be described by congruence pairs, and certain calculations may be per-
formed very quickly as a result; a congruence on an arbitrary semigroup may
be described by a set of generating pairs, a very concise way of recording all
its information; a finite 0-simple semigroup’s congruences can be described by
a linked triple, and we give a new way of finding a congruence’s linked triple
using its generating pairs; and we attempt to extend the use of linked triples to
an arbitrary semigroup, using the principal factors of its J-classes, which are
all 0-simple.

The algorithms described are summarised in pseudo-code, and code is at-
tached to this report for use in the GAP computational algebra system.

Contents

1 Introduction

1.1 Motivation e
1.2 Contents
1.3 Expected Readership
1.4 GAP Implementation
1.5 Basic Definitionso

2 Generating Pairs

2.1 Background Theory
2.2 The Algorithm
2.3 Implementation Lo

3 Linked Triples

3.1 BasicResults 0.
3.2 Calculating Linked Triple from Generating Pairs
4 Congruences by J-Classes
41 Theldea.
4.2 Attempts
5 Inverse Semigroups
5.1 Background Theory
5.2 Algorithms
5.2.1 Representing a congruence by its congruence pair
5.2.2 PairInclusion Lo oL
5.2.3 Class Evaluation

6 Evaluation

6.1 Benchmarking oL
6.1.1 Generating Pairs L0
6.1.2 Linked Triple from Generating Pairs
6.1.3 Inverse Semigroup Congruences

6.2 Further Work o

=W w NN

S

15
15
17

22
22
23

26
26
31
31
33
34

Chapter 1

Introduction

1.1 Motivation

In any branch of algebra, congruences are an important topic. By the various
homomorphism theorems which have been found, an algebraic object’s congru-
ences are closely associated with its homomorphic images and its quotients.
These properties describe the structure and symmetry of this object, and give
a very good model of understanding what the object is and how it works.

Despite the importance of congruences, in many branches of algebra congru-
ences are not studied directly. An object’s quotients and homomorphic images
are still discovered, but the necessary theory is built up using other, equiva-
lent objects — either because these other objects are easier to understand than
congruences per se, or because certain important calculations can be completed
more efficiently than by studying sets of pairs.

For example, group theory has the concept of a congruence on a group, and
this concept aptly describes the group’s quotients and homomorphic images.
However, for any congruence p there is a normal subgroup N whose cosets are
precisely the congruence classes of p. Hence group congruences are studied “by
proxy”, and a rich theory is built up using only normal subgroups. [1, p.154]

Similarly, ring theory has the concept of a congruence on a ring. But for a
congruence p on a ring R, there exists a two-sided ideal I whose residue classes
are precisely the congruence classes of p. Hence ring congruences are also not
studied directly, but their theory is composed by studying the ring’s ideals. [1,
p.154]

In semigroup theory, in general, congruences are studied directly. So far
there has not been discovered a “better” object which can be used in place of
semigroup congruences, in the way that normal subgroups are used in place of
group congruences. However, certain categories of semigroups do have conve-
nient properties which allow us to describe their congruences in other ways.

A completely 0-simple semigroup has its non-universal congruences in bi-
jective correspondence with its linked triples (see Definition 3.2), and these
linked triples have enough information not only to describe the congruence
completely,[1, p.83-91][2, p.4-11] but to make calculations regarding the con-
gruence much faster computationally. [2, p.29-30]

An inverse semigroup also has a useful characterisation of congruences: its

congruences are in bijective correspondence with its congruence pairs (see Defi-
nition 5.12), and these congruence pairs also completely specify the congruence,
giving simpler (and therefore computationally faster) methods of calculating
certain properties of the congruence. [1, p.157]

In this report, we examine some of these alternative ways of representing
semigroup congruences, and investigate how they can be used to give improved
computational methods. We present several entirely new algorithms, as well as
some new lemmas and theorems which are used to justify them. Furthermore,
we present GAP code which implements these algorithms. All this represents
original research.

1.2 Contents

The first topic we discuss is generating pairs, in Chapter 2. Generating pairs
are a way of describing semigroup congruences using a very small amount of
space (computationally or otherwise). A small set of pairs R is stored, and
this is used as a description of Rf, the smallest congruence containing R. We
show that this construction is well-defined, and present a new way to go about
calculating the congruence from a set of generating pairs.

In Chapter 3 we describe, for a O-simple semigroup, an entirely new algorithm
for calculating a congruence’s linked triple using only its generating pairs. We
include any theory necessary to justify this algorithm, including lemmas and a
theorem which also constitute entirely original research.

The linked triples representation we have described applies only to finite
simple and 0-simple semigroups. In Chapter 4 we explore the possibilities of
using this method to represent congruences on an arbitrary semigroup S, by
considering in turn each of the [J-classes of S and describing the congruences
on its (0-simple) principal factor. This has never been done before, and several
approaches are considered, but no satisfactory theorem is found.

Finally, Chapter 5 contains an explanation of congruences on inverse semi-
groups. We state some general theory about inverse semigroups, and then ex-
plain the link between congruences and congruence pairs (see Definition 5.12).
We give algorithms for verifying a congruence pair, determining whether a pair
is in the congruence based on its congruence pair, and listing all the elements
of a congruence class using the congruence pair.

1.3 Expected Readership

This report is written to be understood by readers at postgraduate or high
undergraduate level, who have undertaken some study of semigroup theory.
As far as possible, it is designed to be self-explanatory, requiring as little pre-
existing knowledge of the field as possible. However, it does not intend to explain
all of semigroup theory from zero knowledge, and so a reference book such as
[1] might be useful to readers less familiar with the area.

Chapter 3 contains many references to a previous report [2], and while Sec-
tion 3.1 summarises all the results necessary to understand the chapter, readers
wanting a fuller understanding of the area might consult that report.

1.4 GAP Implementation

Throughout this report, we are concerned with the problem of computing with
congruences. Various algorithms are given showing in a concrete way how these
computations can be done. Inside the body of this report, these algorithms are
presented by pseudo-code, but accompanying this report is an implementation
of the algorithms in the Semigroups package [4] of the GAP computational
algebra system [3].

The files attached to this report are the full source code of the Semigroups
package, modified to include my implementations of the algorithms described
in this report. These implementations can be found in the following locations,
inside the gap/ directory.

o Generating Pairs — pairs-cong.gi and pairs-cong.gd
e Inverse Semigroups — inverse-cong.gi and inverse-cong.gd

e Linked Triple from Generating Pairs — AsRZMSCongruenceByLinkedTriple
function in reesmat-cong.gi

1.5 Basic Definitions

Here we give a few basic definitions which will be used in later chapters.

Definition 1.1. A relation R on a semigroup S is a subset of S x S. If
(z,y) € R, then we say that = is R-related to y, and we may write this as
z R y.

Definition 1.2. A relation R on a semigroup S is called
e reflexive if (z,z) € R for all z € S,
e symmetric if (z,y) € R implies (y,z) € R,
e transitive if (z,y), (v, 2) € R implies (z, z) € R, and
e an equivalence if it is reflexive, symmetric, and transitive.

An equivalence E partitions a semigroup into equivalence classes, such that
(z,y) € E if and only if z and y are in the same equivalence class. We denote
the equivalence class of = by E,.

Definition 1.3. A relation R on a semigroup S is called
e left-compatible if (ax,ay) € R for all (z,y) € R and a € S,
e right-compatible if (za,ya) € R for all (z,y) € R and a € S, and
e compatible if (zz,yt) € R for all (z,y), (z,t) € R.

In fact, a relation is compatible if and only if it is left-compatible and right-
compatible. [1, p.22-23]

Definition 1.4. A relation p on a semigroup S is called a congruence if it is
reflexive, symmetric, transitive, and compatible.

Definition 1.5. For a semigroup S, the trivial congruence or diagonal rela-
tion Ag is the relation on S given by {(z,z) | x € S}.

Chapter 2

Generating Pairs

For a semigroup S, a congruence p is a set of pairs contained in S x S. Given
certain pairs which are in p, the four axioms of a congruence (see Definition 1.4)
imply certain other pairs which must be in p; for example, if we have the pair
(a,b) € p, then we must also have the pair (b,a) € p by symmetry. Similarly, if
we have the pairs (z,y), (y, 2) € p, then we must also have the pair (z,z) € p
by transitivity.

In fact, in general a congruence p with a great number of pairs may be
reduced to a list of pairs R C p only a fraction of the size, from which all other
pairs in p will follow using the definition of a congruence. We may use this fact
to describe a congruence computationally, storing only the pairs in the set R —
we call these the generating pairs — and thus vastly reducing the time and space
complexity of various congruence algorithms. This motivates the following body
of theory, which will allow us to describe an algorithm to calculate a congruence
from it generating pairs.

2.1 Background Theory

Definition 2.1. Let R be a relation on a semigroup S. We define R¥ as the
smallest congruence p on S such that R C p.

To show that this is well-defined, we need to prove that there is one con-
gruence containing R which is strictly smaller than all other such congruences.
Consider any two congruences p and ¢ on S, such that R C p and R C 0. Now
consider the relation

pNo={(z,y) € Sx S| (z,y) €pand (x,y) €Ec}.
Clearly RC pno.
(R) Since (z,z) is in p and o for all z € S, pNo is reflexive.

(S) If (z,y) € pNo then (z,y) € p and (z,y) € 0. By the symmetry of p and
o therefore, (y,z) € p and (y,z) € o, and so (y,z) € pNo. Hence pNo
is symmetric.

(T) Let (z,y), (y,2) € pNo. Similarly to the symmetric argument, we can use
the transitivity of p and o to show that (z,2) € pNao, so pNo is transitive.

(C) Let (z,y),(2,t) € pNo. Since p and o are congruences, we know that
(zy, zt) is in both p and o, so (zy, zt) € pNo and pN o is compatible.

Therefore pN o is a congruence.

If p and o are distinct but of equal size, their intersection pNo is a congruence
containing R which is strictly smaller than each of them. Hence there is precisely
one smallest congruence containing R, which we may call R

This gives us a concise way of describing a congruence; however, this repre-
sentation can only be useful if we have a good algorithm to calculate Rf from
R, or indeed to determine whether a pair (a,b) is in R¥ given only R.

We first need to establish a few definitions, in which R is a relation on a
semigroup S. Let

R !'={(z,y) €Sx S| (y,2) € R}.

Next, let o be the operation of concatenation, so that for two relations R, and
Ry on S,

RioRy={(z,y) € SxS|3z€S:(x,2) € Ry, (z,9) € Ra},

and for n € N let
R"=Ro---oR.
—_—

n times

Definition 2.2. The transitive closure R of a relation R is the relation
given by
R* = JR"
neN
Lemma 2.3. If R is a reflexive relation, then R is the smallest transitive
relation containing R.

Proof. Clearly R C R*. First we show that R* is transitive. Let (z,¥), (y,2) €
R, ie. (z,y) € R™ and (y, z) € R" for some m,n € N. Clearly,

(CC, Z) c Rm ° Rn —]_:{m+n7

and so (z,z) € R, so R™ is transitive.

Next we want to show that there is no transitive relation containing R which
is smaller than R*°. Let T be a transitive relation such that R C T. Since T is
transitive, T™ = T for all n € N. Since R C T, we also have that R C T" =T
for all n € N. Hence

R*=|JR"CT,
neN
so R* is no larger than T. [1, p.21] O

Now we are ready to make a definition which produces the equivalence rela-
tion generated by R.

Definition 2.4. For a relation R on a semigroup S, we define R€ as the relation
(RURTUAg)™.

Lemma 2.5. For a relation R on a semigroup S, R is the smallest equivalence
relation E on S such that R C E.

Proof. Clearly R C R°.

Similar to the proof of Lemma 2.3, we will prove that R is an equivalence
relation, and then go on to prove that there is no smaller equivalence relation
containing R.

Let Q = RUR ' UAg, so that R® = Q™. Since Ag contains all the
pairs necessary for reflexivity, we know that Q is reflexive, and therefore Q° is
reflexive and, by Lemma 2.3, transitive.

To show symmetry, observe that (z,y) € R if and only if (y,2) € R™!, and
that (x,y) € Ag if and only if z = y. Q is therefore certainly symmetric, and

Qn _ (Q—l)n — (Q”)_l,

and so Q" is symmetric.
Now let (x,y) € R¢. For some n € N, we have (z,y) € Q™. By the symmetry
of Q",
(y,z) € Q" C Q> =R,

and so R° is symmetric. Hence R€ is an equivalence.

Now to show that R is the least such equivalence, consider any equivalence
E on S such that R C E. Since E is reflexive, we know that Ag C E, and since
E is symmetric and contains R, we know that R~! C E. Hence

Q=RUR 'UAg CE.

Finally, since E is transitive and contains Q, we know from Lemma 2.3 that
Q> C E. Hence R? is contained in E, and so is no larger than any equivalence
on S. O

Definition 2.6. For a relation R on a semigroup S, we define R€ as the relation
{(zay, zby) | (a,b) €R, z,y € 5*}.

Lemma 2.7. For a relation R on a semigroup S, R€ is the smallest compatible
relation on S containing R.

Proof. R certainly contains R — all the elements of R are encountered in the
case that x =y = 1.

Let us show first that R¢ is compatible. Let (u,v) € R® and let w € S.
Now there must exist a,b € S and z,y € S! such that u = zay, v = xby,
and (a,b) € R. Hence wu = wz -a-y and wv = wx - b -y, and wr € S,
so (wu,wv) € R® and R€ is left-compatible. Similarly, vw = z - a - yw and
vw=2z-b-yw, and yw € S, so (uvw,vw) € R and RE is right-compatible.

Finally we need to show that there is no compatible relation smaller than
R° which contains R. For this purpose, let C be a compatible relation on
S such that R € C. Now for any (a,b) € R and 2,y € S, we must have
(zay, zby) € C by the definition of compatibility. Every element of R¢ has this
form, hence R® C C. [1, p.26] O

The smallest compatible relation R has some properties which will be useful
later. These properties make up the following lemmas:

Lemma 2.8. For a relation R, (R71)¢ = (R¢)~!

Proof. Let R be a relation on a semigroup S. R™! = {(a,b) | (b,a) € R}, so
(R™H° = {(zay, xby) | z,y € S*, (b,a) € R}.
The inverse of this last expression is
{(zay, zby) | z,y € S*, (a,b) € R},

which is equal to R°. Now ((R‘l)c)_1 = R, which is equivalent to what we
wanted. 0

Lemma 2.9. Let S be a semigroup. The relation Ag is equal to Ag®.

Proof. Clearly Ag C Ag® (let z =y =1).

Now let (u,v) € Ag®. We must have u = xzay,v = xby for some (a,b) € Ag
and x,y € S. If (a,b) € Ag then a = b, so u = zay = xby = v, so (u,v) €
Asg. O

Lemma 2.10. Let A and B be relations on a semigroup S. If A C B, then
A°¢ C Be.

Proof. Let A C B, and let (zay,zby) be an arbitrary element of A€ where
(a,b) € A and z,y € S. Since A C B, we have that (a,b) € B, and hence also
that (zay,xby) € BE. O

Lemma 2.11. If R is a compatible relation, then R™ is also compatible, for all
n € N.

Proof. Let R be a compatible relation on a semigroup S, and let n € N. Now
let (a,b) € R™, and « € S. Hence there exist ¢1,ca,...,¢pn, 1 € S such that
a=cy,b=cyy1, and

(c1,¢2),(c2,¢3),-..,(cn,cny1) € R.
Since R is left-compatible,
(xc1,xea), (Tea, xes), . .., (xCn, Tent1) € R,
and since R is right-compatible,
(c1, com), (cax, c32), . . ., (cpx, cpi1x) € R,

and therefore
(za,zb) e R" and (az,bx) € R",

so R™ is compatible. [1, p.26] O
Now that we have these ways of describing the smallest equivalence relation
and the smallest compatible relation containing a set of pairs, we are ready to

describe the smallest compatible equivalence relation, or congruence, containing
those pairs:

Theorem 2.12. Let R be a relation on a semigroup S. Then R¥, the smallest
congruence on S which contains R, is equal to (R°)®.

Proof. Since R is a relation, it follows from Lemma 2.5 that (R°)¢ is an equiv-
alence, and it certainly contains R. To show that it is a congruence, we now
only need to show that it is compatible:

By Definition 2.4, (R°)® = Q*°, where

Q=R°UR)'UAs.

Lemma 2.8 gives us that (R°)~! = (R7!)¢, and Lemma 2.9 gives us that Ag =
AgC, so
Q=R°UMR M UAS,

and finally applying Lemma 2.10 gives us
Q=(RUR'UAy)".

Hence by Lemma 2.7, Q is a compatible relation.
Let a € S and let (z,y) € (R°)¢ = Q. By Definition 2.2, (z,y) € Q" for
some n € N, and by Lemma 2.11 we know that Q" is compatible. Hence

(azx,ay), (za,ya) € Q" C Q™ = (R,

and so (R)¢ is a congruence.

All that remains is to show that there is no congruence containing R which
is smaller than (R€)e.

Let p be a congruence containing R.. Since p is compatible, p¢ = p by Lemma
2.7; and since R C p, by Lemma 2.10, R C p°. So we have

R Cp.

Finally, since p is an equivalence containing R®, we know from Lemma 2.5
that (R%)° C p, so (R°)¢ is the smallest congruence on S containing R. [,
p.26-27] O

This theorem gives a strong mathematical description of the congruence
generated by a set of pairs; in fact, it allows us to derive the following, even
simpler description of the congruence, which will be of great use in computing
facts about the congruence:

Definition 2.13. Let S be a semigroup, and let R C § x S. If ¢,d € S are
such that
c=xay and d= xby

for some z,y € St and either (a,b) or (b,a) is in R, then we say that ¢ and d
are connected by an elementary R-transition. [1, p.27]

Theorem 2.14. Let S be a semigroup, let R C S x S, and let a,b € S. Then
(a,b) € RY if and only if there exists n € N and a sequence of elements

a=2z1 29— —>2,=0b

such that z; is connected to z;11 by an elementary R-transition for 1 < i < n.
[1, p.27]

Proof. From Theorem 2.12 we have that R = (R°)¢. From Definition 2.4, this
is equal to
(REUR) T UAg)™.

Hence by Definition 2.2, a pair (a,b) € S x S is in R if and only if there exists
some n € N and a sequence a = z; — 29 — --- — 2, = b such that

(Zi, Zi+1) e R°U (RC)_l U AS

for 1 <i<n.

This sequence of elements corresponds closely to the sequence of elementary
R-transitions described in the theorem, the only exception being that we may
remove links in the sequence where (z;,2z;11) € Ag, i.e. where z; = z;11. In this
case we of course still have the shorter sequence

e 21 T R T 242 7 ...

Hence we now only need to show that (c,d) € R°U (R¢)~! if and only if ¢
and d are connected by an elementary R-transition:

(«<): Let ¢ and d be connected by an elementary R-transition. Hence there
exist x,y € S! such that ¢ = way and d = wxby, where either (a,b) € R or
(b,a) € R. In the case that (a,b) € R we have (¢,d) € R, and in the case that
(b,a) € R we have (c,d) € (R°)~!. In either case, we have (c,d) € R°U(R¢)™!,
as required.

(=): Let (c,d) € RCU(R®)~L If (c,d) € R® then there exist z,y € S* such
that ¢ = zay and d = zby, for (a,b) € R. If on the other hand (c,d) € (R®)~!
then there still exist x,y € S* such that ¢ = zay and d = zby, but for (b,a) € R.
In either case, this gives an elementary R-transition from c to d. O

2.2 The Algorithm

Theorem 2.14 provides a useful description of the congruence generated by a set
of pairs. In the context of computational mathematics, we may certainly want
to describe a semigroup congruence and compute certain properties of it, such
as its pairs, its classes, or its join or meet with another congruence. Here we
present an algorithm to determine whether a pair is in a congruence, using only
its generating pairs.

Let p be a congruence on a semigroup S. We begin with a lookup table L —
this is a list of integers which has one entry for each element x in .S. This integer
is the number of p;, the congruence class to which x belongs. At the start of
the algorithm, each element is assumed to be in its own singleton congruence
class, so the list has the form

1,2,3,....19].

Note that here we are using square-bracket notation for a list, where for example
[1,4,1,7] is a list of four elements and L[n] refers to the nth entry in the list L.

As the algorithm progresses, at various times we will find that two elements
(say x and y) coincide, and so we will combine the classes p, and p,. One
way to do this would be to go through the whole list, finding every entry which
matches p,, and updating it to point to p,. However, this operation has high

10

time complexity, and would cause any implementation of this algorithm to take
a long time to complete, Instead, we use the union-find algorithm [5], which
updates the lookup table L in a more efficient way, as follows:

Rather than treating L as a simple table in which elements are p-related
if and only if they have the same number in their L entry, we treat an entry
in the table as a “pointer” to another entry in the table. Only if an entry in
the table points to itself do we treat it as the actual number of the congruence
class. Hence we have a function, FIND, which takes an integer between 1 and
|S| (referring to the position of an element x € S) and returns the number of
the congruence class:

procedure FIND(L,n)
if L[n] =n then
return n
else
return FIND(L, L[n])
end if
end procedure

Now we may view the operation of finding an element’s class as traversing
a tree from its leaf up to its root, and we can view the entire connected tree as
the class itself. In order to combine two classes, therefore, we have the function
UNION, which simply finds the roots of the two trees and changes the higher
one to point to the lower:

procedure UNION(L,m, n)
M := FIND(L, m)
N := FIND(L, n)
if M < N then

LIN|:=M

else if N < M then
L[M]:=N

end if

end procedure

These two functions now allow us to transform a simple list of the integers
1 to |S| into a set of trees which completely describe the classes of p. Note that
this union-find method has automatically removed the problem of transitivity,
as well as those of reflexivity and symmetry: if we simply iterate through the
pairs of a relation, say Q, and we relate the element = to y, and then y to z, we
have combined the classes p;, p, and p, into a single class, and so we have added
the pair (x, z) with no additional effort; similarly every element z is related to
itself in p, from the very beginning; and relating = to y is precisely the same
as relating y to x. In other words, if we perform UNION on all the pairs of a
relation Q one by one, we produce a table L which describes the equivalence

Q°.

11

Since R = (R°)¢, it is clear that we now only need to input the pairs of the
relation R° into UNION, and we will finish with a table which describes all the
information of RE.

R® = {(zay, zby) | (a,b) € R, z,y € §'},

so we need a way to find every pair (zay, xby) for each (a,b) € R. Let X be a
set of generators for the semigroup S. So now each pair we want to find has the
form

(-Tm e TX10Y1Y2 Yy Tm $2331by1y2 ce yn)a

where all the x;,y; € X are generators of S. To accomplish this, we have a
list of pairs to inspect, P, which starts off containing precisely the pairs of R.
In turn, we inspect each of these pairs (a,b), and apply each of the generators
x € X to it, first on the left (giving us the pair (za,zd)) and then on the right
(giving us (ax,bx)). Each one of these, if it has not been encountered before,
is itself added to the list P to have further generators added later. In this way
every possible (zay, xby) € R€ is encountered and UNION applied to it.

If we follow this algorithm, every element of R¢ will be found and included
in the union-find method. However, a small improvement can be made which
takes advantage of union-find already accounting for reflexivity and symmetry:
when a new pair (a,b) is found, it is not added to P if a = b, or if we have
already found (b, a).

After all the pairs have been applied in this way, we are left with a table L
which represents a tree structure describing how the elements of S are contained
in their p-classes. We now “flatten” this table, by replacing each entry L[n]
with FIND(L[n]). Now we have a table where, as in the naive example earlier,
(a,b) € p if and only if L[a] = L[b]. Finally, and optionally, we may decide
to “normalise” the numbers in the table: depending on the contents of each
class, the congruence classes may be numbered 1,4,11,19... where we would
rather they were numbered 1,2, 3,4 ... This change can be performed with linear
complexity by a single sweep through the table at the end.

Require: S = (X) is a semigroup, n = |S|, RC S x S
procedure CONGRUENCEBYGENERATINGPAIRS(R)
L:=11,2,...,n]
P
for (a,b) € R do
UNION(L, a, b)
Add (a,b) to P
end for
1:=0
while ¢ < LENGTH(P) do
1:=1+1
Let (a,b) = PJi]
for x € X do
if ax # br and (az,bz), (bx,ax) ¢ P then
Add (ax,bz) to P
UNION(L, ax, bx)

12

end if
if xa # «b and (xa,zb), (zb,xa) ¢ P then
Add (za,xb) to P
UNION(L, za, xb)
end if
end for
end while
> Normalise the table
L := NORMALISE(L)
return L
end procedure

We have used a function called NORMALISE to convert the union-find table
L to a normal lookup table with congruence class numbers 1,2,3,4... This
function is shown below:

Require: L is a list with size n
procedure NORMALISE(L)

H:=|
next :=1
forie {1...n} do
I := FIND(L, i)
if H[j] = I for some j € N then
L[il:=3j
else
Hinext] :=1
L[i] := next
next := next + 1
end if
end for
return L

end procedure

The procedure as above returns a full lookup table which allows us to check
whether two elements are in Rf. However, if we do not require a full description
of the congruence, but only want to test whether a certain pair (a,b) is in the
congruence, then we may add a test inside the main while loop to check whether
Pa = Pb, and return true if so. In this way, a result can be given very early in
the process, and a lot of time may be saved. However, a “false” result can only
be returned for certain once the entire algorithm has completed.

2.3 Implementation

The previous section presented an abstract algorithm which finds R¥ from a rela-
tion R. However, in actually implementing this algorithm on a computer, there
are certain technical considerations which affect the time it takes to complete.
A few of these considerations are discussed here.

13

Firstly, since the entries of the list L correspond to the elements of the
semigroup S, it is necessary to have some way of listing the elements of S in a
fixed order, so that a given element can be looked up quickly and its position
in L determined. The GAP computational algebra system[3] has an Elements
method which calculates a list of all the elements of S. This list should be stored
with the congruence object, and then elements can be looked up in the list and
given a consistent unique integer. Another improvement, if the semigroup is one
with complicated multiplication, is the storing of left and right Cayley graphs
in advance; since we only ever multiply an element by the generators of the
semigroup, this provides a very fast way to find the necessary products without
actually having to multiply elements and look up their position in the list.

Another source of work for a computer is the test, on finding a new pair, of
whether that pair has already been discovered and added to P. As the algorithm
progresses, P may grow very large, and to iterate through the whole list each
time looking for a pair might take a long time to complete. The use of a hash
table to store found pairs significantly improves the time complexity of this
operation. When a pair (a,b) is found, (a,b) and (b,a) are looked up in the
hash table, and if they do not exist then (a,b) is added to P and to the hash
table. In fact, by this method, when pairs in P have been fully inspected and
all generators applied on the left and right, they may then be discarded to free
space, with the knowledge that they still exist in the hash table and so will not
be processed again.

The final consideration is the use of the algorithm, as mentioned at the end
of the last section, to test whether a specific pair is in R¥. If the pair (a,b) is
encountered early in the algorithm, or if several pairs together with transitivity
imply that (a,b) must be in the congruence, then we may simply return true
and stop working. However, it is prudent to save the work that has been done so
far, so that when another pair is looked up or the whole congruence evaluated,
calculations need not be repeated. Thus, a special object should be defined
in the implementation, hidden from the user, which stores information so far
computed, and resumes the calculation if another test is called. Of course, if
ever the calculation is completed and a full lookup table produced, then it may
be used to look pairs up almost instantly, and P and the hash table may be
discarded after all.

14

Chapter 3

Linked Triples

The category of 0-simple semigroups has an important property which makes
the study of their congruences much simpler computationally: the concept of
linked triples. A full description of how these objects can be used to carry out
fast computations with congruences is included in another report which I wrote,
Computing with Congruences on Finite 0-Simple Semigroups [2]. A few of the
important results from that report are included in the next section, omitting
any proofs:

3.1 Basic Results

Recall the following characterisation of finite O-simple semigroups:

Theorem 3.1. (The Rees Theorem) FEvery completely 0-simple semigroup is
isomorphic to a Rees 0-matriz semigroup MP°[G; I, A; P], where G is a group
and P has no row or column which consists entirely of zeros. Conversely, every
such Rees 0-matriz semigroup is completely 0-simple. [1, p.72-75] [2, p.4]

Hence we can consider any finite 0-simple semigroup by considering its iso-
morphic Rees O-matrix semigroup. Next we give the definition of a linked triple,
and assert that such a semigroup’s linked triples correspond bijectively with its
non-universal congruences.

Definition 3.2. For a finite 0-simple Rees 0-matrix semigroup M°[G; I, A; P],
a linked triple is a triple
(N,S,T)

consisting of a normal subgroup N < G, an equivalence relation S on I and an
equivalence relation 7 on A, such that the following are satisfied:

1. S Cer, where ey = {(i,j) € I x I|YA € A:pyy =0 <= py; =0},
2. T Cep, whereepy ={(\,p) e AXA|Viel:py =0 < pu =0},

3. For all 4,5 € I and A\, pp € A such that pxi,prj,Pui,Puj 7 0 and either
(i,j) € S or (A, n) € T, we have that gxu;; € N, where

—1 —1
Anpij = PXiP i PujiPyj -

15

(where gxuij = p,\ip;ilpﬂjp;jl). [1, p.86] [2, p.4]

Theorem 3.3. For a finite 0-simple Rees 0-matriz semigroup M°[G; I, A; P],
there exists a bijective mapping I' between its non-universal congruences and its
linked triples. [1, p.91] [2, p.5-9]

We may of course want to know how to calculate a congruence’s correspond-
ing linked triple. That is, given a congruence p, we may want to calculate I'(p).
Let us write such a linked triple as (N,,S,, 7).

Definition 3.4. We define the equivalence S, C I xI by the rule that (i,7) € S,
if and only if

i (Zvj) €er, and
o (i,p5A) p (G,p3; s A)
for all A € A such that py; # 0 (and hence by €7, pa; # 0). [1, p.84] [2, p.5]

Definition 3.5. We define the equivalence 7, C A x A by the rule that (X, u) €
T, if and only if

i ()\hu) € en, and
i (i7p;i17 A) p (ivp;i17 :u’)
for all ¢ € I such that py; # 0 (and hence by €7, pu; # 0). [1, p.84] [2, p.5]

Let the top row of P be called 1. Label as 15 the first (furthest left) column
such that py,1, # 0. Finally, let 15 be the identity of the group G. This allows
for the following definition:

Definition 3.6. We define N, as the normal subgroup of G given by
N,={a€ G| (11,a,14) p (11,1G,14)}-
[1, p.84] [2, p.5]

Finally, we state how to determine whether a pair is in p using its linked
triple:

Theorem 3.7. Let M°[G; I, A; P] be a finite 0-simple Rees 0-matrix semigroup,
and let p be a congruence with linked triple (N,S,T). Then p has the property
that two non-zero elements (i,a, \) and (j,b, 1) are p-related if and only if

1. (i,j) € S;
2. (A p) €T;

3. (peiapaz) (Pejbpuz) ' € N for some (and therefore all) x € 1,€ € A such
that Dgis Pejs Py Pux 7£ 0;

and 0 is related only to itself. [1, p.87-88] [2, p.5,8]

16

3.2 Calculating Linked Triple from Generating
Pairs

The previous report [2] briefly outlines, in Section 4.1, a method of calculating
a congruence’s linked triple. This simplistic algorithm relies on a “black box”
which is able to answer whether a given pair is in the congruence, and it does
little more than simply interpret Definitions 3.4, 3.5 and 3.6. The method which
was implemented in GAP to accompany that report relied on a pre-existing test
for whether a pair is in p, and had high complexity.

In this section we give a new and simpler method for finding the linked
triple of a congruence, directly from its generating pairs, without enumerating
its classes or finding large lists of additional pairs. This algorithm, and the
theory in this section, constitute original research.

Let us first consider how to determine whether a congruence p on a finite
0-simple Rees O-matrix semigroup S is universal, given a set of generating pairs
R. By the O-simplicity of S, the element 0 is either in a class by itself, or is
related to every element in the semigroup.[1, p.83] Hence p = S x S if and only
if there exists some non-zero element (i,a,A) such that (i,a,\) p 0. There is
a simple way to test for this using the pairs in R, as shown in the following
lemma:

Lemma 3.8. Let R be a relation on the finite 0-simple Rees 0-matriz semigroup
S = MO[G;I,A; P]. The congruence R¥ is equal to S x S if and only if one of
the following is true:

e R contains a pair (x,0) or (0,x) where x # 0,

e (i,a,\) R (j,b, 1), where (i,7) ¢ €1 or (\,) ¢ eq.

Proof. (=): Assume that neither of the options in the list is true. That is, every
pair in R is either (0, 0) or contains non-zero elements (i, a,) and (4, b,), where
(i,7) € ey and (A, p) € ep.

Recall that Rf = (R°)¢. For 0 to be equivalent to another element in (R°)€,
0 must be related to another element in R¢ (reflexivity gives us only (0,0),
symmetry can only give (z,0) if we already have (0,), and transitivity cannot
relate 0 to unless 0 is already related to a non-zero element). Hence we require
(0,z) or (z,0) in R°.

If (0,0) is left- or right-multiplied by any element, it still gives (0,0), so we
need to consider the non-zero pairs in R.. Since for all rows A € A, py; = 0 if and
only if py; = 0, we can see that left-multiplying by any element will either give
two non-zero elements or two zeros. And since for all columns ¢ € I, py; = 0 if
and only if p,; = 0, right-multiplying by an element will similarly always give
two non-zero elements or two zeros. Hence 0 is in a class on its own in R, R,
and Rf, so Rf #£ S x S.

(«<): Certainly if R contains a pair (x,0) or (0,z), then R* also contains
that pair, and by the O-simplicity of S, R =S x S.[1, p.83]

Now consider the case where (i,a,A) R (j,b, 1), but (i,5) ¢ ;. Hence,
without loss of generality, there exists a row v € A such that p,;, = 0 but
pvj # 0. Now we left-multiply by the element (1,1, v):

(1,1,v)({,a,A) = 0
(1,1,v)(4,b,n) = (1,pu;b,p)

17

Hence (1, p,;b, 1) R 0, and so R* = S x S as before. A similar case applies
where (A, 1) € e4. O

So our algorithm now has a quick method for determining whether a con-
gruence is universal, using only its generating pairs. If a pair is found which
matches one of the conditions in the last lemma, the algorithm can immediately
terminate, since the universal congruence has no linked triple.

In finding an algorithm to calculate a linked triple from a set of generating
pairs we can simplify the problem by viewing it in a certain light: we need to
find some linked triple which describes a congruence containing R; we then need
to ensure that of all such linked triples, we have found the one which matches
the smallest congruence possible. In fact, the size of a congruence is related to
the size of the components of its linked triple, as follows:

Lemma 3.9. Let N, and N, be normal subgroups of G with N, < N, let
S, CS, CIxI, andletT,C T, CAxA such that

(NpaSpa 7;) and (Noasml];)

are linked triples, corresponding to congruences p and o respectively, on a finite
0-simple Rees 0-matrixz semigroup M°[G;I,\; P]. Then p C o.

Proof. Firstly, observe that (0,0) is in both p and ¢; and observe that 0 is not
related to a non-zero element by either congruence.
Now, let (i,a,\) p (j, b, u). Hence by Theorem 3.7,

(4,4) €Sp € o,
(M) €T, €T,
(peiapre) (Pejbpua) ' € N, < N,
for £ and x as in the theorem. Hence, by the same theorem,
(i,a,A) o (5,0,).
O

This lemma tells us that if we reduce the size of any of a linked triple’s
components, we reduce the size of the corresponding congruence. Hence, in

effect, we are searching for the smallest linked triple which relates every pair in
R.

Definition 3.10. For a finite 0-simple Rees 0-matrix semigroup M°[G; I, A; P],
we define the relations Ry and R by

Ry = {(i,j) € I x I | (i,a,A) R (j,b,) for some a,b € G, A\, u € A},
Ry = {()\7u) eAxA | (i,a,\) R (j,b, p) for some a,b € G, Lje[}.

Theorem 3.11. Let S be a finite 0-simple semigroup M°[G; I, A; P], and let
R C S x S generate a non-universal congruence R¥. Let S = (Ry)¢, let T =

18

(RA)¢, and let N be the smallest normal subgroup of G containing the set X,
where

X = {(peiapre) (pesbpye) " | (isa,A) R (b, a)s €, as in Theorem 3.7 |
U S@upij | (4,7) € Ry, A € A such that px;, pui # 0
U GXpij ()‘7/’(‘) € R/\7 la] € I such that Pxis PAj 7é 0.

Then (N,S,T) is the linked triple corresponding to RE.

Proof. First we will show that (N,S,T) is linked, in the sense of Definition 3.2.
Then we will show that the congruence p defined by (N,S,T) contains all the
pairs in R. Finally we will show that p is contained in every congruence that
contains R.

Let us show that (NV,S,7) is linked. By definition, N < G, and by Lemma
2.5, S and T are equivalence relations. Now we need to satisfy the three condi-
tions in Definition 3.2. By definition, R generates a non-universal congruence,
and so by Lemma 3.8, R;y C ¢y and Ry C e5. Since €7 and €5 are equivalences,
this gives us that S C ey and T C €4, so conditions (1) and (2) are fulfilled.

Condition (3) follows from the definition of X, the generating set of the
normal subgroup N. For each pair (i,j) € S and for each pair (A, 1) € T, qxuij
must be included in N. Indeed, for the pairs in R; and Ry, they are included
in X, and all the others follow from the symmetry and transitivity applied in
moving from R; to (R;)¢. Hence (N,S,7T) is a linked triple.

Let us now show that R C p, where p is the congruence defined by (N,S,T).
(0,0) is in any congruence on S, so (0,0) is certainly in p whether it is in R or
not. Since R generates a non-universal congruence, there is certainly no (0, x)
or (z,0) in R with z # 0. So we only need to consider non-zero pairs, as follows:

Let (i,a,A) R (j,b,). Hence (i,5) € Ry C S and (A, u) € Ry € T. Let
x € I,& € A be the first row and column such that p¢;, prg # 0; by the definition
of X,

(pfiapkm)(pﬁjbpum)71 e X CN.

These three observations directly satisfy the three requirements in Theorem 3.7,
so (i,a,\) p (4,b,). Hence R C p.

Finally, we need to show that p is the smallest congruence containing R. Let
o be an arbitrary congruence on S containing R. If ¢ = S x S, then cer-
tainly p C o. If however, ¢ is non-universal, then ¢ has its own linked triple
(Noy Soy Tor)-

Let (¢,j) € S. Hence (4,5) € (Ry)°, so there is some sequence of elements
1=k —ky— =k, =J

such that (ky,kr+1) or (kri1,kr) is in Ry for every » € {1...n — 1}. From
each step of this sequence, we obtain the knowledge that, for some a,b € G and
A €A,

(kTvaa A) R (k7’+17b’ lu) or (kT-‘rlvba :u‘) R (kTaa7)\>7

19

and hence
(kT7 a,)\) g (kr+17 bu :u’)

This now gives us some information about ¢’s linked triple: by Theorem 3.7,
(k17 k2)7 (k27 k3); .o (kjnfla kn) S So'a

and so by transitivity, (i,7) € S,. A similar argument establishes that if (A, u) €
T then (A, 1) € T5. Hence S C S, and T C 7.

Now let n € X. Since X is the union of three sets, there are three possible
cases which we must consider for where n lies. The first is that

n = (peiaprs) (Pejbpus) ",

where (i,a,A) R (j,b, 1), and where £ € A and « € I are a row and column
such that pg; and py, are both non-zero. Since (i,a,A) and (j,b, 1) are R-
related, they must also be o-related, and so part (3) of Theorem 3.7 requires
that (pgiapm)(pgjbpw)*l € N,. Son € N,.

The second case is that n = gxpi;, where 7,7 € I and A, u € A are such that
(t,7) € Ry and px;, pui # 0 (hence py;,pu; # 0). We recall that R C o and
therefore (7,7) € Ry implies (i,5) € S;. Now from Definition 3.2, in order for
(No, S5, T5) to be linked, we must have gx.;; € Ny, so n € N,. The third case,
where n = gxu;; and (A, 1) € Ry, is similar.

Hence X C N,, and since N, is a normal subgroup of G, this gives us that

(X)) =N<N,.
So we finally have N < N,, S C S,, and 7 C 7,. Hence, by Lemma 3.9, we
have that p C o, so that p is the smallest congruence on S containing R. O

This last theorem now gives us enough information to derive our algorithm,
which is shown in the pseudo-code below. Note that this algorithm includes
one additional improvement when calculating the elements of X. We require
N to contain all the elements g,¢;; where (4,7) € Ry, for all v,£ € A such that
Dui,Dei 7 0. However, we need not add all of these elements to X for them to
be included in N. It is sufficient to choose one fixed v such that p,; # 0, and
add g,¢; for all the other § such that pg; # 0. The other elements follow using
transitivity and the definition of a normal subgroup.

Require: MY[G; 1, A; P] is a finite 0-simple Rees 0-matrix semigroup
procedure LINKEDTRIPLE(R)

Ly=[1,2...|1|]
Ly=1[1,2...|A]]
X =0

for (z,y) € R do
> Check for the universal congruence
if x =y then
Skip this pair
else if x =0 or y =0 then
return Universal Congruence (no linked triple)
end if
Let © = (i,a, \)

20

Let y = (j,0, 1)
if (i,7) ¢ ey or (A,) ¢ €5 then

return Universal Congruence (no linked triple)
end if

> Combine row and column classes
UNION(Ly, 4, 5)
UNION(Lp, A,)

> Add generators for normal subgroup
Choose v € A such that p,; # 0
Choose k € I such that pyx # 0
Add (puiapak)(pujbpur) " to X

for £ € A\ {v} such that p¢; # 0 do
Add Queij to X
end for
for x € I\ {k} such that py, # 0 do
Add Ak to X
end for
end for

L; := NORMALISE(Ly)
Ly := NORMALISE(L,)
Let N = (X))
Let S be the equivalence with lookup table Ly
Let T be the equivalence with lookup table L
return (N,S,T)

end procedure

Here we have made use of the NORMALISE function from Section 2.2 to
convert the tables L; and Ly to simple lookup tables which describe & and 7.

21

Chapter 4

Congruences by [J-Classes

My last report [2], and Chapter 3 of this report, describe a simple, efficient
way of characterising congruences on finite simple and 0-simple semigroups: by
linked triples. In this chapter we make an original, but unsuccessful attempt to
extend this to a characterisation of congruences on arbitrary finite semigroups.

4.1 The Idea

Let S be a finite semigroup. It is of course made up of a number of D-classes,
and since S is finite, the D-classes of S are precisely the same as the [J-classes
of S. Recall that J is the relation which relates x to y if and only if x and
y generate the same two-sided ideal: S'zS' = S'yS'. Recall also that the
J-classes of S have a partial order <, defined by the rule that J, < J, if and
only if S1zS! C StySt.

Let J be a J-class of S, and let z,y € J. Hence S'zS' = S'yS'. Now
consider the product zy: since zy € S'2S!, we have S'zyS' C S'xS'. Hence
either zy € J or J,, < J. In other words, the product of two elements of a
J-class is always in either the same J-class or a lower one. An abstract form
of this multiplication is shown below, in a construction where all classes below
J are boiled down to a single element, and all classes above or incomparable to
J are discarded:

Definition 4.1. Let S be a semigroup. The principal factor of a J-class J of
S is the semigroup J* consisting of the set J U {0}, with multiplication * given
by
sxt— { st if s,t, st € J,
0 otherwise.

The principal factor of a J-class must always be a 0-simple semigroup, and
so we can apply the linked triple methods from [2] to find all the congruences of
J* and compute with them in an efficient manner. Since we can do this for all
the J-classes of S, it would be desirable if we could combine the congruences
of all the principal factors in some way to give a description of a congruence
on S. If there are n J-classes in .S, then we are looking for a theorem which
associates a congruence p on S with an n-tuple whose entries are all congruences
on the principal factors of the J-classes. If such a theorem could be found,

22

the simplification of 0-simple semigroup congruences to linked triples could be
extended to all finite semigroups.

4.2 Attempts

In this section we show some attempts to find a theorem to connect the congru-
ences on a semigroup S to combinations of congruences on the [J-classes.

Given a congruence p on S, for each J-class J we want a congruence py on
J* which is in some sense a “restriction” of p to J. The first definition we could
try is to relate elements of J if and only if they are related in p, and to relate 0
only to itself. That is,

pr=(p N (J xJ)) U{(0,0)}.

This seems a natural definition to use. However, if we use this definition it turns
out that in some cases p; is not a congruence:

Example 4.2. Let S be the semigroup generated by the two transformations

1 2 3 4 (r 23
2 3 3) 3 1 3)

let J be the highest J-class, and let p = S x S. Then p; as defined above is
not a congruence.

Proof. For ease of writing, let us omit the source of transformations and simply
write the image of the transformation in square brackets, so in this case S =
([233],[313]). Now let p =S x S, the universal congruence on S. S has five
elements: [1 3 3],[2 3 3],[3 1 3], and [3 2 3] which belong in one J-class J; and
[3 3 3] which belongs in a lower J-class. Now let z = y = z = [2 3 3], and
let t = [3 2 3]. Certainly (z,y), (2,t) € p, and since z,y, z,t € J, we also have
(z,9),(2,t) € p;. However, we multiply the two pairs to give yt =[2 3 3] € J
and 2z = [33 3] ¢ J. In the context of J* therefore, xz = 0, and so (xz, yt) ¢ p,
which shows that p; is not a congruence. O

Clearly if p; is not a congruence on J* then it is not useful to us. We
therefore attempt another definition of p;, hoping to find that it is a congruence
and also has the properties we want.

The problem with our last definition was that it did not account for congru-
ences which had an element in J related to an element in a lower J-class. Our
last definition of p; always has 0 in a class on its own, but there are certainly
congruences p which relate elements from different J-classes.

Since J* is a 0-simple semigroup, we can define all its congruences by linked
triples, except the universal congruence J* x J*. This universal congruence is
the only one which relates 0 to any non-zero element, since we know that for
a 0-simple semigroup 0 is related either to everything or only to itself. We did
not take this possibility into account when defining p;. Therefore, let us give a
new definition which applies this concept:

X T if3ae Jbe S\ J:(a,b)€p,
pr = (pN(J xJ))U{(0,0)} otherwise.

Firstly, we show that by this new definition, p; is always a congruence.

23

Example 4.3. Let S be a semigroup, let J be a J-class in S, and let p be a
congruence on S. Then p; is a congruence.

Proof. First let us rephrase ps to help with the proof. A pair (x,y) is in py if
and only if at least one of the following is true:

1. x,y € J and (z,y) € p,
2. z2=y=0,
3. there exist a € J and b € S\ J such that (a,b) € p.

If « € J then (z,z) € py by rule 1, and (0,0) € ps by rule 2, so py is
reflexive. If (x,y) € ps by any of the three rules then (y,z) € p; by the same
rule, so py is also symmetric.

To show transitivity, let (x,y), (y, z) € ps. Each of (z,y) and (y, 2) is related
by one of the three rules above, so there are nine cases in total:

e (11): z,y,z € J and (z, 2) € p by transitivity, so (x,z) € py by (1).

(12, 21): This case is impossible, since it would imply that y € J and
y=0.

o 22): z=y=2=0,50 (z,2) € ps by (2).

(13, 23, 31, 32, 33): There exist a € J and b € S\ J such that (a,b) € p,
so (x,z) € py=J* x J* by (3).

Hence (z,z) € py, so py is transitive.

Finally, let (z,v), (z,t) € ps. The relation p; is a congruence if and only if
we can show that (xz,yt) € p; (something we disproved in Example 4.2 for the
previous definition of p;). Again since each of (z,y) and (z,t) can be in p; by
any of three different rules, we have nine cases in total:

o (11): z,y,2,t € J and (x,y),(z,t) € p. Since p is a congruence, we have
(zz,yt) € p. Now we have three cases: either zz and yt are both in J, in
which case (zz,yt) € py by (1); or one of zz and yt is in J and the other
is not, in which case (3) is satisfied and so (zz,yt) € p;y = J* x J*; or
finally, xz = yt = 0 € J*, which satisfies (2) and so (zz,yt) € p.

12): z,y € J and z =t = 0. Hence xz = yt = 0, so (xzz,yt) € ps by (2).

21): x =y=0and z,t € J. Hence zz = yt =0, so (xz,yt) € p; by (2).

(
(

e (22 x=y=z2z=t=0,s0xz=yt =0, s0 (xz,yt) € p; by (2).
(

13, 23, 31, 32, 33): There exist a € J and b € S\ J such that (a,b) € p,
so (zy, zt) € py = J* x J* by (3).

Hence (zy, 2t) € ps, so py is a congruence. O

Now for any congruence p on a semigroup S we have a congruence p; on
the principal factor of each J-class. In order to make this useful, we have
introduced the rule that if any element x € J is p-related to an element outside
J, then (z,0) € p;y and so p;j = J* x J*. This is necessary for p; to be a
congruence, but it is only a useful construction if we can rely on p; being, in

24

some sense, a “restriction” of p — if there is a pair of elements x,y € J such
that (x,y) € ps then we must have (z,y) € p. If this condition is not satisfied,
then any attempt we make to describe p by its J-class congruence p; will be
unhelpful, since information about which elements in J are related will have
been lost.

In fact, p; may not be a restriction of p, as seen in the following example:

Example 4.4. We shall now define a semigroup S with two J-classes, and a
congruence p, such that there is a J-class J and two elements z,y € J such
that (x,y) € ps but (z,y) ¢ p.

Let J and K be groups both isomorphic to the symmetric group S3. If x
is a permutation in S3, then we denote its images in J and K by xz; and =g
respectively. For example, we have the element (1 3 2); € J, (2 3)kx € K, and
the identity ex € K. Furthermore we define two maps: ¢ : J U K — S3 simply
maps z; to x and zx to x, for each x € S3; and ¢ : J UK — K maps x; to
T and rg to itself.

Now we define the semigroup S as the set JUK, together with multiplication

wu—d Y ifx,y € J,
TEYT (wok)(yox) otherwise,

and we define a relation p on S by the rule that (z,y) € p if and only if z¢ and
y¢ are in the same coset of A3. Clearly p is an equivalence, since it splits .S into
precisely two classes. If (z,y) € p and a € S, then z¢ and y¢ are in the same
coset of As. Since As is a normal subgroup of S3, we know that xa and ya must
be in the same coset, as well as ax and ay. Hence p is a congruence.

Clearly J and K are the two J-classes of S. Consider the elements (1 2);
and (1 2) k. Since these elements map by ¢ to the same element in Sz, they are
certainly p-related. This means that we have © € J and y € S\ J such that
(z,y) € ¢, and so py = J* x J*.

Now consider the elements (1 2); and (1 2 3);: since (1 2 3) € Az but
(12) ¢ As, (1 2); is not p-related to (1 2 3);. But we already know that all
elements of J are pj-related to each other. Hence we have x,y € J such that
(z,y) € pj but (z,y) ¢ p. So in this case, p; is not a “restriction” of p.

We have now tried two different ways of extending the linked triples method
from 0-simple semigroups to arbitrary semigroups via their J-classes, but there
does not seem to be an easy way of doing so. Perhaps with more investigation
it would be possible to find a satisfactory way of doing this. For now, we turn
our attention to another class of semigroups with interesting congruence theory:
the inverse semigroups.

25

Chapter 5

Inverse Semigroups

Another category of semigroup with an interesting characterisation of congru-
ences is the inverse semigroups, where each congruence has a congruence pair
which can be calculated, and used to determine the pairs of the congruence
more quickly. Let us start by detailing some background theory about inverse
semigroups:

5.1 Background Theory

Definition 5.1. Let S be a semigroup and x € S. An element y € S is the
inverse of z if and only if

zyr = x and y = yzy.
(6, p.11]

Definition 5.2. An inverse semigroup is a semigroup S such that every
element z € S has a unique inverse z=! € S. [6, p.158]

This section will consider the idempotents of S. Recall that an idempotent
of S is any element e € S such that ee =e.
Theorem 5.3. Let z be an element of an inverse semigroup S. Then xx~! is

an idempotent.
Proof. (za=Y)(xz™1) = (za~lz)a™! = 22~ L. O

Theorem 5.4. In an inverse semigroup S, the set of idempotents E is a com-
mutative subsemigroup of S.

Proof. Let e, f € E be idempotents, so that ee = e and ff = f. Their product
ef is in S, and so has an inverse which we call z (hence, (ef)z(ef) = (ef) and

z(ef)z = z).

Now, consider the element fze:
(ef)(fze)(ef) =effzeef =efzef =ef,
(fze)(ef)(fze) = freef fre = f(zef2)e = fze,

26

so fze is an inverse of ef, and z is also an inverse of ef. But by the definition
of an inverse semigroup, ef has only one inverse, so z = fze. This tells us that
z is an idempotent, since

zz = (fze)(fze) = f(zefz)e = fze = z.

Now, since z is an idempotent, z must be an inverse of z (since z(z2)z = z),
and since ef is by definition the inverse of z, we have that ef = z, so ef is
also an idempotent. Therefore, we have that ef € E, so E is closed and is a
subsemigroup of S.

We now only need to show that idempotents commute. For e, f € F, both
ef and fe are idempotents that are self-inverse. Now we can show that fe is
the inverse of ef, since

(ef)(fe)(ef) =ef feef = (ef)(ef) =ef,
(fe)(ef)(fe) = feeffe = (fe)(fe) = fe,

and since ef is the inverse of ef and fe, by uniqueness, we have

ef = fe.

Since e and f are arbitrary idempotents, we can see that idempotents commute.
[1, p.146] O

Now that we have defined an inverse semigroup and its idempotent semi-
group, we can start thinking about its congruences. Unless stated otherwise, in
this section S refers to an inverse semigroup and p refers to a congruence on S.

Definition 5.5. The trace of p is the restriction of p to the idempotents of S.
That is,
trp=pN(E x E).

[1, p.155]
Lemma 5.6. The trace of p is a congruence on E.

Proof. Clearly trp C E x E. Since p is a congruence on S, tr p contains every
pair (e, e) such that e € E, and so trp is reflexive.

To show symmetry, let (e, f) € trp. Hence (e, f) € p, and since p is sym-
metric we have (f,e) € p. Since f and e are both in E, (f,e) € pN (E x E),
and so tr p is symmetric.

Now let (e, f), (f,g) € trp. Hence (e, f), (f,9) € p, and since p is transitive
we must also have (e, g) € p. Since e and g are both in E we have (e, g) € trp,
and so tr p is transitive.

Finally, let (e, f) € trp and g € E. Since E is closed under multiplication,
we have the four elements ge,gf,eg, fg € E. Since p is compatible on S5,
we have (ge,gf),(eg, fg) € p, and since these pairs lie in £ x E, we have
(ge,gf), (eg, fg) € trp. Hence trp is compatible, and so it is a congruence on
E. O

Lemma 5.7. The trace of p is normal in S, which is to say that
(a Yea,a " fa) € trp

for every pair (e, f) € trp and every element a € S.

27

Proof. First, observe that (e, f) € p and since p is compatible, that (a " tea,a™! fa) €
p. Now we need only show that a~'ea and a~'fa are in E. We consider the
following:

e(aa™Nea = a *(aa " eea = a tea,

using the facts that idempotents commute, that aa !

is an idempotent, and that
a~taa™! = a~!. Hence a 'ea and similarly a=! fa are in F, so (e tea,a ! fa) €

trp. [1, p.155] O

A congruence’s trace goes some way towards describing the congruence com-
pletely. The only other thing which is needed is its kernel, defined as follows:

Definition 5.8. The kernel of p is the union of all the p-classes of S which
contain idempotents. That is,

Kerp = U Pe-
eckl

[1, p.155]

Like the trace, the kernel has certain characteristics which can be identified
from its definition, such as the following lemma which uses the new definition
of a normal subsemigroup.

Definition 5.9. A subsemigroup N of a semigroup S is called normal if it is
full (contains all the idempotents of S) and self-conjugate (a~'za € N for all
x € Nya € S). [1, p.155]

Lemma 5.10. The kernel of p is a normal subsemigroup of S. [1, p.155]

Proof. First we should show that Ker p is a subsemigroup of S. Let z,y € Ker p.
By the definition of Ker p, there exist e, f € E such that (z,e), (y, f) € p. Since
p is a congruence,

(zy,ef) € p,
and so since ef € F, we have zy € Ker p, so Ker p is closed, and is a subsemi-
group.

Clearly Ker p contains every idempotent of .S, so it is full. We now only need
to show that it is self-conjugate. Let x € N and a € S. There must be some
e € E such that (z,e) € p, and since p is compatible, (e 'za,a tea) € p as
well. Since idempotents commute, we have

(atea)(a tea) = a te(aa™ ea = a (aa"Heea = (a taa™1) (ee)a = a"Lea,

1

so a~lea is an idempotent. Hence a~'wa € Ker p, so Ker p is normal. O

We will soon see that the pair (Ker p, tr p) is all that is needed to completely
describe the congruence p — all of p’s pairs and classes can be determined from
these two components. It would also be desirable for us to say that all such pairs
(N, 7) (consisting of a normal subsemigroup and a normal congruence) describe
congruences on S. This is nearly true, in that every congruence on S can be
described by some pair of this description. However, the kernel and trace of p
have two more properties which must be observed — properties without which
(N, 7) cannot describe a congruence.

28

Lemma 5.11. Let p be a congruence on an inverse semigroup S. For alla € S
and e € F,

1. If ae € Kerp and (e,a™'a) € trp, then a € Ker p.
2. If a € Kerp, then (aa™',a71a) € trp.

Proof. (1): Let a € S and e € E such that ae € Kerp and (e,a"1a) € trp.
Then there exists some f € E such that (ae, f) € p. Since (e,a"ta) € p and p
is a congruence,

(ae,aa™ta) = (ae,a) € p,

and since (ae, f) € p, we have (a, f) € p, so a € Ker p.

(2): Let a € Kerp. There must be some e € E such that (a,e) € p, and
taking inverses, we must have a~! p e™! = e. Hence aa~! and a~'a are both
p-related to ee, so by transitivity, (aa™1,a"ta) € trp. [1, p.155-6] O

These last two properties now give us all we need to give a useful character-
isation of congruences on inverse semigroups: an abstract description of a pair
which forms the kernel and trace of a congruence.

Definition 5.12. For an inverse semigroup S with idempotent semigroup F, a
congruence pair is a pair (N, 7) consisting of a normal subsemigroup N of S
and a normal congruence 7 on S, such that

1. If ae € N and (e,a"'a) € 7, then a € N
2. If a € N, then (aa™t,a7ta) € T
for all elements a € S and e € E. [1, p.156]

Now we can state the result which bijectively identifies congruence pairs with
congruences, and allows for the computational representation we present in the
next section.

Theorem 5.13. Let p be a congruence on an inverse semigroup S with idem-
potent semigroup E. (Ker p,trp) is a congruence pair, and conversely, every
congruence pair (N, T) defines a congruence

pivry = {(y) € Sx S| (a7 e,y ly) e T,ay™ € N}
whose kernel is equal to N and whose trace is equal to 7. Finally, p(ker p,trp) = P-

Proof. Let p be a congruence on S. Lemmas 5.7, 5.10 and 5.11 directly give us
that (Ker p, tr p) is a congruence pair. We need only prove the converse, that
every congruence pair defines a congruence.

Let (N, 7) be a congruence pair, and let

p=pwm={(z,y) €SxS|(z x,y y) e,y " € N}

as in the theorem. We want to show that p is a congruence.
The full subsemigroup N contains every idempotent in S — for any element
€S, xx tex! L I'is an idempotent and so is in N. And since

=T 7, S0 xT
7 is reflexive, (x 7z, z712) € 7, so (z,7) € p, and p is reflexive.

29

Now let (x,y) € p. Hence (z7'x,y7'y) € 7, and since 7 is symmetric,
(y~ty,x~'x) € 7 also. We also have zy~! € N and so, since N is an inverse
semigroup,[1, p.155] (xy~1)~! = yz~! € N. Hence (y,z) € p and p is symmet-
ric.

Let (z,v), (y,2) € p. Hence (z7'z,y~1y), (y " 'y,2712) € 7, and since 7 is

transitive, (x 7'z, 2712) € 7. Also 2y~ !,y2z~! € N, so by closure z(y~'y)z~1 €
N. Certainly y~'y is an idempotent, and as stated above, is 7-related to 2~ x.

Hence

1 1 1

aly~y)e T = aly T y) (T) = a(aT)y

Let e = z(y~'y)27!, so zz27'e € N. Since (z7'z,y~'y) € 7 and since 7 is
normal,
(z(x_la:)z_l,z(y_ly)z_l) €T,

which is to say that (e, (xzfl)*l(xz’l)) € 7. Hence by Definition 5.12 part 1,
zz71 € N, and so (z,2) € p and p is transitive.

Finally to show that p is a congruence, we need to show that it is both left-
and right-compatible. Let (z,y) € p and a € S. We have (z~'z,y"1y) € 7, and
so, using the fact that 7 is normal:

lza, ailyflya) €T,

(atz™
which is to say that ((za)™!(za), (ya)~'(ya)) € 7.

Now to examine the elements in N: since (z,y) € p we have 2y~! € N; note
also that since N is full, the idempotent aa~! € NN, and since N is self-conjugate,
y(aa)y~! € N as well. Now,

(za)(ya)~" = waa™ 'y~ = w(aa”)y Yyt = (xy) (y(aa)y) € N,
So (za)(ya)~! € N, and therefore (za,ya) € p as required, so p is left-compatible.
By similar logic, (ax, ay) € p and p is right-compatible. Hence p is a congruence.

Next we want to show that Ker p = N. First let « € Ker p, so there must be
some e € E such that (z,e) € p. Hence by the definition of p, 27!z 7 e"le =¢
and ze~! = ze € N. Now Definition 5.12 part (1) givesus z € N. SoKerp C N.

Now let € N, and let e = 7 '2. Hence ze~! =2 € N, and

c e = tea e = e_le,

so certainly (z71z,e"le) € 7, and so (r,e) € p, and since e € E, we have
x € Kerp. So Kerp=N.

Now we consider the trace. Let (e, f) € trp. Hence e, f € E and (e, f) € p.
From the definition of p, this means that (e~le, f~1f) € 7. Since e and f are
both idempotents, they are both self-inverse, and so e~te = e and f~1f = f.
Hence (e, f) € 7,80 trp C 7.

Conversely, let (e, f) € 7. Since 7 is a congruence on E, we have e, f € E, so
as before, e"le = e and f~'f = f. Hence (e7le, f71f) € 7. Also, ef = = ef,
which is an idempotent and therefore ef~' € N. Therefore by the definition of
p, (e, f) € p, and since e and f are both in E, we have (e, f) € tr p, as required.
Sotrp=r.

To complete the proof, we want to show that our original congruence p is
the same as the congruence o = p(kerp,irp) generated by the congruence pair
formed from its kernel and trace.

30

Let (z,y) € p, so by taking inverses we also have (z=1,y~1) € p. Now since p
is a congruence, we can multiply these to give (z 712,y 'y) € p (and since these
two elements are idempotents, (z =12,y 1y) € tr p), and by right-multiplication,
(xy~Yyy~!) € p — which gives us zy~! € Kerp since yy~! is an idempotent.
Hence (z,y) € 0,80 p C 0.

Now let (x,y) € 0. By the definition of o we have (z~'x,y~'y) € trp and
zy~t € Ker p. There must be some e € E such that (zy~!,e) € p. Since this e is
an idempotent, we have e = e~'e and we clearly have (e~ e, (zy™') "} (zy™!)) €
p, so by transitivity, (zy~!,yz~lzy~!) € p. We can apply this in the following
chain of equalities and congruences:

v=zzwpay typyztay Yy pyy lyy iy =gy ly =y

Hence (z,y) € p and so p = o, and the identification of congruences to congru-
ence pairs is complete. [1, p.157-8] O

5.2 Algorithms

Now that we have established a good base of theory regarding congruences
on inverse semigroups, we can describe an efficient way of representing these
congruences computationally.

5.2.1 Representing a congruence by its congruence pair

To store a semigroup congruence computationally, we have several methods
which have already been described; we can store a list of all the pairs in the
congruence (perhaps the least efficient way); we can store a set of sets of semi-
group elements, where each set specifies one congruence class; and we can store
a lookup table as described in Section 2.2. But for inverse semigroups, we can
now describe a new way: storing the congruence pair — the kernel and trace —
of the congruence.

The first thing we want when implementing this in a computational algebra
package is the possibility for a user to specify a congruence by supplying its
congruence pair. If a user gives a valid congruence pair (N, 7), we can simply
store that pair, and by Theorem 5.13 all information about that congruence
can be extracted when needed. However, we do need a method to determine
whether (N, 7) is indeed a congruence pair, by checking it against Definition
5.12. To this end, we give the following algorithm.

Require: S and N are finite inverse semigroups, 7 is a congruence
procedure ISCONGRUENCEPAIR(S, (N, 7))

Let X be a generating set for S

Let 71,79, ... 7, be the congruence classes of T

if N is not a subsemigroup of S then
return false

end if

if NRIDEMPOTENTS(N) # |E| then > Is N full?
return false

31

end if
for a € N do > Is N self-conjugate?
for x € X do
if 27taz ¢ N then
return false
end if
end for
end for
> Check conditions (1) and (2) in Def 5.12
forie {1...n} do
for f € 7; do
for a € Ly do
if a € N then
if aa™! ¢ 7; then
return false
end if
else
for e € 7; do
if ae € N then
return false
end if
end for
end if
end for
end for
end for
return true
end procedure

There are a few remarks which must be made to justify parts of the last
algorithm. The first is that we make use of a function called NRIDEMPOTENTS
which we assume to exist. This simply takes a semigroup and returns the
number of its idempotents. Since N C S, if N and S have the same number of
idempotents (| E|) then N is full. The Semigroups package [4] of the GAP system
[3] contains such a method, which is used in the attached implementation.

In checking that N is self-conjugate, we test whether 2 'ax € N for all
a € N, but only for z in the generators of S. This greatly reduces the amount
of work done in most cases, and relies on the observation that if z € S is the
product of generators x - xs - - - x,, then

-1 1

raxr =x, - ~x§1xf1ax1x2 C Ty,

and so by observing that xl_lazl € N, we can repeat the logic to see that
xy ' (z7 azy)r2 € N and so on. It would be desirable if we only had to conduct
this test for a in the generators of N, but it is not clear that

s lax,z'bx e N = zlabz € N,

so in this algorithm we are required to enumerate all the elements of V.

32

Verifying conditions (1) and (2) of Definition 5.12 could be quite expensive
computationally, particularly condition (1) which implies testing three condi-
tions for every combination of @ € S and e € E. To improve the time complex-
ity, rather than going through every element a € S, we instead observe that
a"'a is an idempotent, and therefore we go through just the idempotents, a
much smaller set, indexed by the congruence classes of 7. For each idempotent
f, we need to identify the elements a such that a~'a = f — we use the following

lemma:
Lemma 5.14. Let f € E and a € S. f = a~ta if and only if (a, f) € L.

Proof. (=): Let f = a~'a. Hence a-f = aa~'a = a and a™! -a = f, so
(a,f) € L.

(<): Now let (a, f) € L. Asabove, we know that (a,a™'a) € £, which means
that f and a~'a are idempotents in the same L-class of S. Since § is inverse,
there is only one idempotent in each £-class[1, p.145], and so f = a~'a. O

Hence for each idempotent f, we simply look through its L-class L; and
inspect each a we find, knowing that for each one f = a~'a. Since we are going
through the idempotents f in order of the 7-classes, we know immediately which
7-class a~'a is in. If a is found to be in N then by condition (2) we must have
aa~! in the same class.

If, however, a is found not to be in NV, then we instead test condition (1),
which may perhaps be best rewritten as

1. Ifa ¢ N and (e,a”'a) € 7, then ae ¢ N.

Since every a € S is in an L-class, and since every L-class has an idempotent,
we will find every a ¢ N at this part of the loop, and since we have already
identified 7; which contains precisely the idempotents e such that (e,ata) € T,
it makes sense to perform the test for condition (1) here. It is as simple as going
through each e € 7; and returning false if for any one of them ae € N.

By using the improvements above, we arrive at the algorithm which was
given, which has the advantage of listing the elements of each 7-class just once,
using it, and then moving onto the next 7-class. For this reason, a good imple-
mentation of the congruence 7 itself might well be as a partition of F — a list of
lists of elements, where each list describes a class. This is the approach taken
in the attached GAP implementation.

5.2.2 Pair Inclusion

Now we are storing a congruence p on an inverse semigroup S as a congruence
pair (N, 7), we need a way of performing some common operations, most notably
determining whether a pair (z,y) is in p. This is actually quite simple, and in
most cases computationally cheaper than by using the generating pairs method
described in Chapter 2.

The method is derived straight from Theorem 5.13, which gives us

p=A{(z,y) eSxS| (@ z,y 'y eray 't € N}

The algorithm is therefore as follows:

33

procedure (z,y) € p
if 7'z € 7,-1, then
if zy~! € N then
return true
end if
end if
return false
end procedure

5.2.3 Class Evaluation

One last important operation we might want to carry out is to evaluate a class
— that is, given an element = € S, to find a list of all the elements to which x
is p-related. To accomplish this, we again use Lemma 5.14 to find every y € S
such that (z7'z,y~'y) € 7): for each e in the 7 class of 27!z, find all the
elements y € L, elements that are L-related to e.

The algorithm is given as follows:

procedure GETRELATEDELEMENTS(p, x)
Pz =D
foree 7,1, do
for y € L. do
if zy~! € N then
Add y to p,
end if
end for
end for
return p,
end procedure

These algorithms have been implemented in the code of the attached file
inverse-cong.gi — this is to be included in the Semigroups package [4] of
the GAP system [3], along with simple functions to allow the manipulation of
objects representing congruence classes and quotients.

34

Chapter 6

Evaluation

We have considered the theory of congruences for several different types of semi-
group: we have used some existing theory from sources in the bibliography, as
well as developing some new theory for ourselves in the form of new lemmas and
theorems, and we have applied the sum of this knowledge to create several new
algorithms. In that sense, a large part of this report represents original research
which improves the complexity of several common problems in computational
semigroup theory.

Indeed, attached to this report is a body of original GAP code which applies
these algorithms so that they can actually be used, and full advantage can be
taken of the improvements they represent. Their performance is tested in the
next section.

6.1 Benchmarking

Several parts of the GAP code attached to this report were tested against exist-
ing implementations in the GAP library [3] or the Semigroups package [4], and
the time taken to complete certain calculations was recorded. The results are
presented here for comparison.

6.1.1 Generating Pairs

The algorithm described in Section 2.2 was implemented in the file pairs-cong.gi
attached to this report. We constructed a semigroup, and a congruence by gen-
erating pairs, and we tested the in method (for determining whether a particular
pair is in a congruence) for three different pairs (z,y) and recorded the time
taken to return a result. Then, for each pair (z,y) we used an existing GAP im-
plementation of semigroup congruences to test an equivalent condition (whether
x is in the congruence class containing y) and again recorded the time taken.

The semigroup S chosen was a random transformation semigroup on 6 points
with 6 generators. The precise semigroup can be specified to the program as
follows.

gens := [Transformation([1, 3, 4, 1, 3, 5
Transformation([2, 4, 6, 1, 6, 5
Transformation([4, 1, 2, 6, 2, 1

—_
N

Transformation([4, 6, 4, 3, 3, 31),
Transformation([5, 1, 6, 1, 6, 31),
Transformation([5, 2, 5, 3, 5, 31) 1;

s := Semigroup(gens);

The congruence p was specified by a set of two randomly-generated pairs; it
can be specified as follows.

cgens := [[Transformation([5, 5, 2, 4, 2, 41),
Transformation([1, 5, 4, 5, 4, 51) 1,
[Transformation([3, 3, 3, 6, 3, 3]),
Transformation([1, 6, 6, 6, 6, 1 1) 1 1;
cong := SemigroupCongruenceByGeneratingPairs(s, cgens);

Then random pairs (x,y) were created and passed to the two different func-
tions. The times taken to complete are shown in the following table. Note that
x and y are transformations, given in the table as the image which should be
passed to GAP to specify them. The “Old” column shows the time taken in
milliseconds to determine whether (z,y) € p using the previous implementation
in the GAP library, and “New” shows that of the implementation attached to
this report. Each test was performed 20 times, and the figure shown is the
average.

Time (ms)

. y Old | New
[3,4,6,3,6,41|[1,5,1, 3,1, 515261 | 1996
[5,3,3,5,3,41|0[3,2,2,2,2, 319767 | 2668
(6, 1,1, 4,1,6]1|[6, 3,5, 6,5, 319331 | 3633

It should be noted that the semigroup and congruence were re-initialised
in GAP immediately before each test, and so a full enumeration was started
before each one. In a single session without this re-initialisation, the information
calculated so far about the congruence would be stored, and successive calls to
test whether a pair is in the congruence would be faster as a result. In any case,
it can be seen that the new algorithm performs slightly faster than the old.

We should also recall that while the old algorithm carries out explicit mul-
tiplications, the new one uses left and right Cayley graphs which must be cal-
culated in advance. Similarly, a full list of elements must be produced so that
we can look up elements as integers. In a real-life situation, it is quite possi-
ble that these objects may have been calculated before the user executes any
congruence-related commands, and if so, it would have been stored for later use.
In any case, it is a once-only overhead, and if several different pairs are tested
then it is only on the very first call that these objects need to be calculated.

The amount of time it takes, for the semigroup S above, to calculate the left
and right Cayley graphs and a list of elements, is on average 1309 ms (over 100
tests). We might therefore subtract 1309 from each entry in the “New” column
above, if we were to assume that these objects had already been calculated.
This adjustment is a far stronger claim for this new method over the existing
one.

36

6.1.2 Linked Triple from Generating Pairs

Section 3.2 gives an algorithm for calculating the linked triple of a finite O-simple
semigroup congruence, using the generating pairs of the congruence. A naive
algorithm for this task was included in the code written to accompany [2], now
a part of [4], and an implementation of the new algorithm has now replaced it in
the file reesmat-cong.gi attached to this report. Here we constructed a finite
0-simple semigroup, and specified a congruence on it by generating pairs. Then
we used the old and new algorithms to find the congruence’s linked triple.

Let G be the permutation semigroup ((3 6), (4 6)) (isomorphic to S3) and
define P as a 13 x 27 matrix containing pairs from G° (due to its size, this
matrix is omitted here). This allows us to form the matrix S = M°[G; I, A; P).

Now we let p be a congruence generated by the pairs

((3,(46),5), (17, (4 6),5)),

((3,(34),7),(17,(34),7)).

This semigroup and congruence were chosen using random functions in GAP;
S is 0-simple as required.

We used the two different algorithms to compute the linked triple of this
congruence, and we performed each test multiple times. The old algorithm
from [4], which we ran three times, took over 5 minutes to complete in each case
(5m19s, 5m19s, 5m24s respectively). The new algorithm was run 1000 times,
and always completed in less than one tenth of a second. On average, it took 4
milliseconds.

We carried out one more test using a different semigroup. Let G = ((3 4))
(a permutation group isomorphic to C5), and let P be the matrix specified to
GAP using the following code.

p =1
[0, 3,4, 0, 0, (3,4, 0, O, 0, (3,4, 0, 0, (3,9, O1,
[0, 0, (3,4, 0,0, (3,9, O, O, 3,9, 0, O, 0,01,
[0, (3,9, O, O, (3,4, 0, 0, (3,4, 0, O, 0, 0, 01,
[0, (3,4, 0, O, (3,4, (3,4, O, 0, 3,9, O, O, 0,01,
[O, o0, (3,4, 0, O, (3,4, (3,4, 0,0, O, 0,0, (3,1,
(o, O, (3,9, 0, O, (3,8, 0, O, 0,0, O, O, 3,9 1,
[3,4, O, O, 0,0, O, 0,0, O, (3,8, 0, O, 01,
[O, 3,4, 0, 0, 0, 0, (3,4), (3,4, 0, O, (3,4, (3,49, 01,
[o, 0,0, O,0, (3,4, 0,0,0, O, O, O, 3,91,
[O, 0, (3,4, (3,4, O, 0, (3,4), 0, 0, 0, (3,4), (3,4, 01 1;

Let S = MP[G; I, A; P] as before, and let p be the congruence with the single
generating pair

((27 (3 4), 1)> (2, €, 1))

We calculated the linked triple again, several times with each method. The old
method was run twenty times, and took around 89 seconds to complete (88.812s
on average). The new method was run 1000 times, and again completed every
time in under one tenth of a second. The average time was 4 milliseconds.

This is clearly a huge performance improvement, and the new code will soon
replace the old code in [4].

37

6.1.3 Inverse Semigroup Congruences

Finally, we carried out tests on the method in Section 5.2.2, which determines
for an inverse semigroup S and a congruence p on S, whether or not a pair (x, y)
isin S.

We constructed a semigroup, and specified a congruence using generating
pairs. Then we calculated its congruence pair using methods in the attached file
inverse-cong.gi, and created an “inverse semigroup congruence by congruence
pair” object. Three random pairs (z,y) were then created, and for each pair, we
used the in method from inverse-cong.gi to determine whether (x,y) was in
the new congruence object (the “new” method). Then, as in Section 6.1.1, we
used the function in the GAP library to determine, using the generating pairs
representation, whether & was in the congruence class of y (the “old” method).
The time taken to complete each of these tests was recorded in milliseconds.
The test parameters are as follows.

The semigroup S chosen was a random inverse semigroup on 6 points with
6 generators. The precise semigroup can be specified to the program as follows.

gens := [
PartialPerm([1, 2, 3, 41, [4, 1,2, 61),
PartialPerm([1, 2, 41, [4, 6, 31),
PartialPerm([1, 2, 41, [5, 2, 31),
PartialPerm([1, 2, 3, 61, [1, 3, 4, 51),
PartialPerm([1, 2, 3, 4, 61, [2, 4, 6, 1, 51),
PartialPerm([1, 2, 3, 61, [5, 1, 6, 31) 1;

s := InverseSemigroup(gens);

The congruence p was specified by a set of two randomly-generated pairs,
which can be specified as follows.

cgens := [
[PartialPerm([41, [1]), PartialPerm([21, [61) 1,
[PartialPerm([51, [5]), PartialPerm([1,2,4 1, [1,6,4]

cong := SemigroupCongruenceByGeneratingPairs(s, cgens);

Then three random pairs (z,y) were created and passed to the two different
functions. The pairs which were created, and the times taken, are recorded in
the following table. Each figure is the average of 1000 tests, and each element x
or y is given as a list of the two parameters passed to PartialPerm to construct
it.

. Y Time (ms)

Old | New
([1,2,4]1, [4,3,2]1) ([1,2,4]1, [2,4,3]) | 163 0
¢ [41, [11 D (61, [31) 22 0
([1,2,4,6], [5,1,2,4]) 0,) 9337 | 0

Clearly, once we have calculated the congruence pair of an inverse semigroup
congruence, it is a great deal faster to look up pairs using the congruence pair
representation than to look them up using the existing method. However, to
compute the congruence pair to begin with is costly. The congruence pair of the

38

)1 1;

semigroup S which we have been working with takes an average of 9567 ms to
compute (over 20 tests). Clearly, if we only wanted to look up one pair, it would
be faster to use the existing implementation and exhaustively enumerate pairs.
However, if we want to look up several pairs, we soon find that the congruence
pair implementation requires less runtime in total. Furthermore, the possibility
exists for a user to specify a congruence originally by a congruence pair without
using a set of generating pairs, in which case this overhead is not required.

6.2 Further Work

The work presented in this report is open-ended and could be extended in various
ways. In Chapter 4 we attempted to find a way to break down a congruence
on an arbitrary semigroup into smaller pieces by somehow describing how that
congruence acts on that semigroup’s J-classes. No method was found, and
several natural courses of enquiry were shown to be fruitless. However, it might
still be possible to decompose S into O-simple semigroups in some other way.
There might still be some definition of p; which would have the properties we
need.

Chapter 5 could also be extended. We give a characterisation of inverse
semigroups and show how we can compute with congruences by storing congru-
ence pairs. One extension might be to find a good way of describing the classes
of that congruence (analogous to “class triples” on 0-simple semigroups in [2,
p-20-23]). Another good extension would be to find some fast way of enumerat-
ing all the congruences of an inverse semigroup. Finally, it is clearly useful to be
able to calculate the congruence pair (the trace and kernel) of a congruence — an
algorithm, analogous to the one described in Section 3.2, which finds the trace
and kernel of a congruence directly from its generating pairs, could be much
faster than the basic algorithm we implemented in inverse-cong.gi, which we
derived straight from the definitions.

39

Bibliography

Howie, J.M., Fundamentals of Semigroup Theory, Oxford Science Publica-
tions, 1995.

Torpey, M.C., Computing with Congruences on Finite 0-Stmple Semigroups,
MT5991 Report, University of St Andrews, 2014.

The GAP Group, GAP — Groups, Algorithms, and Programming, Version
4.7.5; 2014, (http://www.gap-system.org).

Mitchell, J.D., Semigroups - GAP package, Version 2.1, 2014.

Fiorio, C. & Gustedt, J., Memory Management for Union-Find Algorithms,
Proceedings of the 14th Annual Symposium on Theoretical Aspects of Com-
puter Science, Liibeck, Germany, 1997, 69 (electronic).

Petrich, M., Introduction to Semigroups, Charles E. Merrill Publishing Co.,
1973.

40

