
The Low-Index Subgroups Algorithm
Approaches to parallelisation in HPC-GAP

Michael Torpey

University of St Andrews

22nd August 2013



The question

Given a finitely presented group G = 〈X|R〉, what are its
subgroups of index no more than N?

I X = A set of generators, e.g. {a, b}.
I R = A set of relators, e.g. {a2, b3, (ab)5} such that
a2 = b3 = (ab)5 = 1.

I G = 〈a, b|a2 = b3 = (ab)5 = 1〉 ∼= A5



The algorithm

I “Forced coincidence” approach

I Utilises Todd-Coxeter method for coset enumeration

I Expand coset table defining no more than n cosets, for some
n ≥ N .



Coset enumeration

Todd-Coxeter algorithm:

a a−1 b b−1

H = 1



Coset enumeration

Todd-Coxeter algorithm:

a a−1 b b−1

H = 1 2
Ha = 2 1

I SET 1a = 2



Coset enumeration

Todd-Coxeter algorithm:

a a−1 b b−1

H = 1 2 2
Ha = 2 1 1

I SET 1a = 2

I SCAN a2 on coset 1:
1

a→ 2
a→ 1



Coset enumeration

Todd-Coxeter algorithm:

a a−1 b b−1

H = 1 2 2 3
Ha = 2 1 1
Hb = 3 1

I SET 1a = 2

I SCAN a2 on coset 1:
1

a→ 2
a→ 1

I SET 1b = 3



Coset enumeration

Todd-Coxeter algorithm:

a a−1 b b−1

H = 1 2 2 3 4
Ha = 2 1 1
Hb = 3 1

Hb−1 = 4 1

I SET 1a = 2

I SCAN a2 on coset 1:
1

a→ 2
a→ 1

I SET 1b = 3

I SET 1b = 4



Coset enumeration

Todd-Coxeter algorithm:

a a−1 b b−1

H = 1 2 2 3 4
Ha = 2 1 1
Hb = 3 4 1

Hb−1 = 4 1 3

I SET 1a = 2

I SCAN a2 on coset 1:
1

a→ 2
a→ 1

I SET 1b = 3

I SET 1b = 4

I SCAN b3 on coset 4:
4

b→ 1
b→ 3

b→ 4



Coincidences

Sometimes we may encounter a coincidence.
Example:

a a−1

1 2
2 3 1
3 2

I SCAN a2 on coset 1

I 1
a→ 2

a→ 3

I But we should have 1
a→ a→ 1

I Hence 1 and 3 describe the same coset, and they can be
combined



Coincidences

Sometimes we may encounter a coincidence.
Example:

a a−1

1 2 2
2 �3 1 1

�3 �2

I SCAN a2 on coset 1

I 1
a→ 2

a→ 3

I But we should have 1
a→ a→ 1

I Hence 1 and 3 describe the same coset, and they can be
combined



Coincidences

Sometimes we may encounter a coincidence.
Example:

a a−1

1 2 2
2 1 1

I SCAN a2 on coset 1

I 1
a→ 2

a→ 3

I But we should have 1
a→ a→ 1

I Hence 1 and 3 describe the same coset, and they can be
combined



Forcing a coincidence

I Eventually we cannot continue because either:
I The coset table is complete, or
I We have defined n cosets, the maximum number

I If the table is complete, we have a subgroup

I In any case, we now “force a coincidence”

I Take some pair of cosets i and j, and force i = j

I The resultant table now corresponds to a new subgroup with
a new generator αiα

−1
j constructed from the coset

representatives αi and αj

I Each choice of (i, j) is considered separately as a new branch
in the search tree



Characteristics

We have a backtrack search that:

I is unpredictable in shape

I is unpredictable in size

I may return results before reaching a leaf

I can be split into independent branches



Parallelisation

Two approaches taken:

I Tasks (using RunTask, WaitTask. . . )

I Worker threads (CreateThread, WaitThread. . . )



Sequential implementation
Recursion

DescendantSubgroups := function(...)

subgps := [];

CosetEnumeration(...);

if IsComplete(table) then

Add(subgps, thisSubgroup);

fi;

for each pair of cosets (i,j) do

Append(subgps,

DescendantSubgroups(<table with i=j>, ...)

);

od;

return subgps;

end;



Using Tasks
The “shotgun” approach

DescendantSubgroups := function(...)

subgps := [];

tasks := [];

CosetEnumeration(...);

if IsComplete(table) then

Add(subgps, thisSubgroup);

fi;

for each pair of cosets (i,j) do

Add(tasks, RunTask(DescendantSubgroups, <args>) );

od;

for task in tasks do

Append(subgps, TaskResult(task) );

od;

return subgps;

end;



Using Tasks
Speedup

I Effective up to 4 cores

I Little speedup beyond 4 cores

I Enormous time for large problems – overheads



Using Worker Threads
Objects

I workQueue – Channel of jobs to be done

I numJobs – Number of jobs still incomplete

I resultsChan – Channel used to store results

I finish – Semaphore indicating that all work is complete

I Work – Function executed by each new thread

I ExecuteJob – New name for DescendantSubgroups



Using Worker Threads
Top-level function

LowIndexSubgroups(G, maxIndex, numWorkers)

...

<Create workQueue, resultsChan, numJobs, and finish>

workers := List([1..numWorkers],

i->CreateThread(Work, <args>)

);

ExecuteJob(..., workQueue, resultsChan, numJobs);

WaitSemaphore(finish);

SendChannel(workQueue, fail);

Perform(workers, WaitThread);

<Extract all the results from resultsChan>

...

end;



Using Worker Threads
Work function

Work := function(workQueue, resultsChan, ...)

while true do

j := ReceiveChannel(workQueue);

if j = fail then

SendChannel(workQueue,fail);

break;

fi;

ExecuteJob(j.table, j.label, ...);

atomic numJobs do

numJobs := numJobs - 1;

if numJobs = 0 then

SignalSemaphore(finish);

fi;

od;

od;

end;



Using Worker Threads
ExecuteJob function

ExecuteJob := function(...)

CosetEnumeration(...);

if IsComplete(table) then

SendChannel(resultsChan, thisSubgroup);

fi;

for each pair of cosets (i,j) do

newJob := rec(table := table,

label := b,

reps := reps,

gens := Concatenation(gens,[newGen])

);

SendChannel(workQueue, newJob);

atomic numJobs do

numJobs := numJobs + 1;

od;

od;

end;



Using Worker Threads
Speedup

I Effective up to 4 cores

I Little speedup beyond 4 cores

I Huge number of jobs created – all threads attempting to read
from workQueue very often, resulting in a bottleneck

I If only workers could explore subtrees themselves, so long as
all cores are busy...



“Minimal” Job Sharing

I If every thread has work to do, a thread processes a complete
job depth-first with no communication

I If there is no work left on the queue, a thread must branch

I Avoids either heavy communication on a single channel, or
long-idle workers

I New parameter in ExecuteJob – depthFirst

In the Work function:

atomic readonly numJobs do

depthFirst := numJobs > numWorkers;

od;

I Still have workers idle, waiting for another thread to branch



Improvements

I Decide whether to branch inside depth-first search

I Always keep a “buffer” of items on the queue, to reduce idle
workers – means more breadth-first

I Attempt to predict size of subtree and “branch intelligently”

Other approaches:

I Retrospective job sharing

I Random depth-first search


