Diagram Semigroups

Much more fun than transformations!

Michael Torpey

University of St Andrews
2017-06-07

Transformations

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.

Theorem (Cayley for semigroups)

Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_{S}. [1, p.7]

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.

Theorem (Cayley for semigroups)

Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_{S}. [1, p.7]

$$
\alpha=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 1 & 5 & 5
\end{array}\right), \quad \beta=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 3 & 3 & 5
\end{array}\right)
$$

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.
Theorem (Cayley for semigroups)
Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_{S}. [1, p.7]

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 1 & 5 & 5
\end{array}\right), \quad \beta=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 3 & 3 & 5
\end{array}\right)
$$

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.
Theorem (Cayley for semigroups)
Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_{S}. [1, p.7]

$$
\alpha=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 1 & 5 & 5
\end{array}\right), \quad \beta=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 3 & 3 & 5
\end{array}\right)
$$

$$
\alpha=\mathscr{V} \cdot \boldsymbol{V}
$$

Transformations

Definition

A transformation on a set X is any function $\tau: X \rightarrow X$
Assume $X=\mathbf{n}=\{1,2, \ldots, n\}$, and write \mathcal{T}_{X} as \mathcal{T}_{n}.
Theorem (Cayley for semigroups)
Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_{S}. [1, p.7]

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 1 & 5 & 5
\end{array}\right), \quad \beta=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 3 & 3 & 5
\end{array}\right)
$$

Partitions

Partitions

\mathcal{P}_{n}

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

$$
\alpha=\mathrm{S}^{\circ}
$$

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\gamma=\mathbb{A}^{\bullet}
$$

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\gamma=\mathbb{A}_{\bullet}
$$

$$
\delta=M \mathscr{A}
$$

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\gamma=\mathfrak{\curvearrowleft} \text { •' }
$$

$$
\gamma \delta=
$$

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\gamma=\curvearrowleft \mathfrak{\curvearrowleft} \text { •' }
$$

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\gamma=\mathfrak{\curvearrowleft} \text { ••' }
$$

Partitions

\mathcal{P}_{n} - the (bi)partition monoid

Definition

A (bi)partition is any equivalence relation on $\mathbf{n} \cup \mathbf{n}^{\prime}$, where $\mathbf{n}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.

$$
\gamma=\mathfrak{\curvearrowleft} \text { ••' }
$$

How big is the partition monoid?

How big is the partition monoid?

- \mathcal{P}_{n} consists of all partitions of $2 n$ points.

How big is the partition monoid?

- \mathcal{P}_{n} consists of all partitions of $2 n$ points.
- Its size is the Bell number $B_{2 n}$.

How big is the partition monoid?

- \mathcal{P}_{n} consists of all partitions of $2 n$ points.
- Its size is the Bell number $B_{2 n}$.

n	1	2	3	4	5	6	7	\ldots
$\left\|\mathcal{P}_{n}\right\|$	2	15	203	4,140	115,975	$4,213,597$	$190,899,322$	\ldots

Table: Sizes of partition monoids

How big is the partition monoid?

- \mathcal{P}_{n} consists of all partitions of $2 n$ points.
- Its size is the Bell number $B_{2 n}$.

n	1	2	3	4	5	6	7	\ldots
$\left\|\mathcal{P}_{n}\right\|$	2	15	203	4,140	115,975	$4,213,597$	$190,899,322$	\ldots

Table: Sizes of partition monoids

- $\left|\mathcal{P}_{10}\right| \approx 5.2 \times 10^{13}$.

Attributes of partitions

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_{n}$ is transversal if it contains points from both \mathbf{n} and \mathbf{n}^{\prime} (i.e. it "crosses the diagram").

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_{n}$ is transversal if it contains points from both \mathbf{n} and \mathbf{n}^{\prime} (i.e. it "crosses the diagram").

Definition

The rank of a partition is the number of transversal blocks it has.

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_{n}$ is transversal if it contains points from both \mathbf{n} and \mathbf{n}^{\prime} (i.e. it "crosses the diagram").

Definition

The rank of a partition is the number of transversal blocks it has.

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_{n}$ is transversal if it contains points from both \mathbf{n} and \mathbf{n}^{\prime} (i.e. it "crosses the diagram").

Definition

The rank of a partition is the number of transversal blocks it has.

$$
\operatorname{rank}(\alpha)=1
$$

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_{n}$ is transversal if it contains points from both \mathbf{n} and \mathbf{n}^{\prime} (i.e. it "crosses the diagram").

Definition

The rank of a partition is the number of transversal blocks it has.

$$
\operatorname{rank}(\alpha)=1, \quad \operatorname{rank}(\beta)=2
$$

Attributes of partitions

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

$$
\alpha=\curvearrowleft \cdot \curvearrowright \cdot
$$

Attributes of partitions

Definition

The domain（resp．codomain）of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$（resp．$i^{\prime} \in \mathbf{n}^{\prime}$ ）which lie in transversal blocks．

Definition

The kernel（resp．cokernel）of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n}（resp． \mathbf{n}^{\prime} ）．

$$
\alpha=\text { にっっ・ }
$$

$$
\operatorname{dom} \alpha=\{1,3,4\}
$$

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

$$
\begin{gathered}
\alpha=\mathfrak{C} \cdot \stackrel{\bullet}{\operatorname{com} \alpha} \alpha=\{1,3,4\}, \quad \operatorname{codom} \alpha=\left\{1^{\prime}, 2^{\prime}\right\},
\end{gathered}
$$

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

$$
\begin{gathered}
\alpha=\mathfrak{C} \cdot \\
\operatorname{dom} \alpha=\{1,3,4\}, \quad \operatorname{codom} \alpha=\left\{1^{\prime}, 2^{\prime}\right\}, \\
\operatorname{ker} \alpha=\{\{1,3,4\},\{2\},\{5\}\},
\end{gathered}
$$

Attributes of partitions

Definition

The domain (resp. codomain) of a partition $\alpha \in \mathcal{P}_{n}$ is the set of points $i \in \mathbf{n}$ (resp. $i^{\prime} \in \mathbf{n}^{\prime}$) which lie in transversal blocks.

Definition

The kernel (resp. cokernel) of a partition $\alpha \in \mathcal{P}_{n}$ is the restriction of α to \mathbf{n} (resp. \mathbf{n}^{\prime}).

$$
\begin{gathered}
\alpha=\mathfrak{C o c} \cdot \\
\operatorname{dom} \alpha=\{1,3,4\}, \quad \operatorname{codom} \alpha=\left\{1^{\prime}, 2^{\prime}\right\}, \\
\operatorname{ker} \alpha=\{\{1,3,4\},\{2\},\{5\}\}, \quad \operatorname{coker} \alpha=\left\{\left\{1^{\prime}, 2^{\prime}\right\},\left\{3^{\prime}, 4^{\prime}\right\},\left\{5^{\prime}\right\}\right\}
\end{gathered}
$$

Submonoids of \mathcal{P}_{n}

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly
- \mathcal{B}_{n} - the Brauer monoid - each block has size 2

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly
- \mathcal{B}_{n} - the Brauer monoid - each block has size 2
- $\mathcal{P} \mathcal{B}_{n}$ - the partial Brauer monoid - each block has size 1 or 2

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly
- \mathcal{B}_{n} - the Brauer monoid - each block has size 2
- $\mathcal{P} \mathcal{B}_{n}$ - the partial Brauer monoid - each block has size 1 or 2
- $\mathscr{P} \mathcal{P}_{n}$ - the planar partition monoid - diagram is planar

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly
- \mathcal{B}_{n} - the Brauer monoid - each block has size 2
- $\mathcal{P} \mathcal{B}_{n}$ - the partial Brauer monoid - each block has size 1 or 2
- $\mathscr{P} \mathcal{P}_{n}$ - the planar partition monoid - diagram is planar
- \mathcal{J}_{n} - the Jones monoid - diagram is planar; block size 2

Submonoids of \mathcal{P}_{n}

- \mathcal{T}_{n} - the full transformation monoid embeds as seen
- $\mathcal{O}_{n} \leq \mathcal{I}_{n} \leq \mathcal{P} \mathcal{T}_{n}$ embed similarly
- \mathcal{B}_{n} - the Brauer monoid - each block has size 2
- $\mathcal{P} \mathcal{B}_{n}$ - the partial Brauer monoid - each block has size 1 or 2
- $\mathscr{P} \mathcal{P}_{n}$ - the planar partition monoid - diagram is planar
- \mathcal{J}_{n} - the Jones monoid - diagram is planar; block size 2
- \mathcal{M}_{n} - the Motzkin monoid - diagram is planar; block size 1 or 2
[2]

R Howie, J.M., Fundamentals of Semigroup Theory, Oxford Science Publications, 1995, 1.1, 1.5 \& 1.8, 7-35.
James East, Attila Egri-Nagy, Andrew R. Francis, James D. Mitchell, Finite Diagram Semigroups: Extending the Computational Horizon, https://arxiv.org/abs/1502.07150

