Diagram Semigroups Much more fun than transformations!

Michael Torpey

University of St Andrews

2017-06-07

A transformation on a set X is any function $\tau: X \to X$

A transformation on a set X is any function $\tau: X \to X$

Assume $X = \mathbf{n} = \{1, 2, \dots, n\}$, and write \mathcal{T}_X as \mathcal{T}_n .

A transformation on a set X is any function $\tau: X \to X$

Assume $X = \mathbf{n} = \{1, 2, \dots, n\}$, and write \mathcal{T}_X as \mathcal{T}_n .

Theorem (Cayley for semigroups)

Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_S . [1, p.7]

A transformation on a set X is any function $\tau: X \to X$

Assume $X = \mathbf{n} = \{1, 2, \dots, n\}$, and write \mathcal{T}_X as \mathcal{T}_n .

Theorem (Cayley for semigroups)

Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_S . [1, p.7]

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 1 & 5 & 5 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 3 & 5 \end{pmatrix}$$

Transformations

Definition

A transformation on a set X is any function $\tau: X \to X$

Assume $X = \mathbf{n} = \{1, 2, \dots, n\}$, and write \mathcal{T}_X as \mathcal{T}_n .

Theorem (Cayley for semigroups)

Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup T_S . [1, p.7]

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 1 & 5 & 5 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 3 & 5 \end{pmatrix}$$
$$\alpha = \boxed{\swarrow}, \qquad \beta = \boxed{\swarrow}, \qquad \beta = \boxed{\swarrow},$$

Transformations

Definition

A transformation on a set X is any function $\tau: X \to X$

Assume $X = \mathbf{n} = \{1, 2, \dots, n\}$, and write \mathcal{T}_X as \mathcal{T}_n .

Theorem (Cayley for semigroups)

Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_S . [1, p.7]

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 1 & 5 & 5 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 3 & 5 \end{pmatrix}$$
$$\alpha = \bigcup, \qquad \beta = \bigcup, \qquad \beta = \bigcup, \qquad \beta = \bigcup, \qquad \alpha \beta = \bigcup, \qquad \beta$$

Transformations

Definition

A transformation on a set X is any function $\tau: X \to X$

Assume $X = \mathbf{n} = \{1, 2, \dots, n\}$, and write \mathcal{T}_X as \mathcal{T}_n .

Theorem (Cayley for semigroups)

Every semigroup S is isomorphic to a subsemigroup of the full transformation semigroup \mathcal{T}_S . [1, p.7]

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 1 & 5 & 5 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 3 & 5 \end{pmatrix}$$
$$\alpha = \boxed{\swarrow}, \qquad \beta = \boxed{\textcircled}, \qquad \beta =$$

 \mathcal{P}_n

$$\alpha = \overbrace{}^{\bullet} \overbrace{}^{\bullet} ,$$

 \mathcal{P}_n – the (bi)partition monoid

Definition

 \mathcal{P}_n – the (bi)partition monoid

Definition

$$\gamma = \bigcup \bigcup ,$$

 \mathcal{P}_n – the (bi)partition monoid

Definition

$$\gamma = \left| \begin{array}{c} & \\ & \\ \end{array} \right| \quad , \qquad \delta = \left| \begin{array}{c} & \\ & \\ \end{array} \right| \left| \begin{array}{c} & \\ & \\ \end{array} \right|$$

 \mathcal{P}_n – the (bi)partition monoid

Definition

$$\gamma = \left[\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right], \qquad \delta = \left[\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right]$$

 \mathcal{P}_n – the (bi)partition monoid

Definition

A (bi)**partition** is any equivalence relation on $n \cup n'$, where $n' = \{1', 2', \dots, n'\}$.

$$\gamma = \left[\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right], \qquad \delta = \left[\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right]$$

 $\gamma \delta =$

 \mathcal{P}_n – the (bi)partition monoid

Definition

 \mathcal{P}_n – the (bi)partition monoid

Definition

$$\gamma \delta = \underbrace{}$$

 \mathcal{P}_n – the (bi)partition monoid

Definition

$$\gamma \delta = \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

How big is the partition monoid?

• \mathcal{P}_n consists of all partitions of 2n points.

- \mathcal{P}_n consists of all partitions of 2n points.
- Its size is the Bell number B_{2n} .

- \mathcal{P}_n consists of all partitions of 2n points.
- Its size is the Bell number B_{2n} .

\overline{n}	1	2	3	4	5	6	7	
$ \mathcal{P}_n $	2	15	203	4,140	115,975	4,213,597	190,899,322	

Table: Sizes of partition monoids

- \mathcal{P}_n consists of all partitions of 2n points.
- Its size is the Bell number B_{2n} .

\overline{n}	1	2	3	4	5	6	7	
$ \mathcal{P}_n $	2	15	203	4,140	115,975	4,213,597	190,899,322	

Table: Sizes of partition monoids

• $|\mathcal{P}_{10}| \approx 5.2 \times 10^{13}$.

Attributes of partitions

Attributes of partitions

Definition

A block in a partition $\alpha \in \mathcal{P}_n$ is **transversal** if it contains points from both **n** and **n'** (i.e. it "crosses the diagram").

A block in a partition $\alpha \in \mathcal{P}_n$ is **transversal** if it contains points from both \mathbf{n} and \mathbf{n}' (i.e. it "crosses the diagram").

Definition

A block in a partition $\alpha \in \mathcal{P}_n$ is **transversal** if it contains points from both **n** and **n'** (i.e. it "crosses the diagram").

Definition

A block in a partition $\alpha \in \mathcal{P}_n$ is **transversal** if it contains points from both \mathbf{n} and \mathbf{n}' (i.e. it "crosses the diagram").

Definition

$$\alpha = \bigcup_{\beta \in \mathcal{A}} \bigcap_{\beta \in \mathcal{A}}$$

$$\operatorname{rank}(\alpha) = 1,$$

A block in a partition $\alpha \in \mathcal{P}_n$ is **transversal** if it contains points from both **n** and **n'** (i.e. it "crosses the diagram").

Definition

$$\alpha = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & \beta = \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$\operatorname{rank}(\alpha) = 1, \qquad \operatorname{rank}(\beta) = 2.$$

Attributes of partitions

Attributes of partitions

Definition

The **domain** (*resp.* codomain) of a partition $\alpha \in \mathcal{P}_n$ is the set of points $i \in \mathbf{n}$ (*resp.* $i' \in \mathbf{n}'$) which lie in transversal blocks.

Definition

The **domain** (*resp.* **codomain**) of a partition $\alpha \in \mathcal{P}_n$ is the set of points $i \in \mathbf{n}$ (*resp.* $i' \in \mathbf{n}'$) which lie in transversal blocks.

Definition

The **kernel** (*resp.* cokernel) of a partition $\alpha \in \mathcal{P}_n$ is the restriction of α to **n** (*resp.* **n**').

Definition

The **domain** (*resp.* **codomain**) of a partition $\alpha \in \mathcal{P}_n$ is the set of points $i \in \mathbf{n}$ (*resp.* $i' \in \mathbf{n}'$) which lie in transversal blocks.

Definition

The **kernel** (*resp.* cokernel) of a partition $\alpha \in \mathcal{P}_n$ is the restriction of α to **n** (*resp.* **n**').

$$\alpha = \boxed{\begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array}}$$

Definition

The **domain** (*resp.* **codomain**) of a partition $\alpha \in \mathcal{P}_n$ is the set of points $i \in \mathbf{n}$ (*resp.* $i' \in \mathbf{n}'$) which lie in transversal blocks.

Definition

The **kernel** (*resp.* cokernel) of a partition $\alpha \in \mathcal{P}_n$ is the restriction of α to **n** (*resp.* **n**').

$$\alpha = \boxed{\begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array}}$$

 $\operatorname{dom} \alpha = \{1,3,4\},$

Definition

The **domain** (*resp.* **codomain**) of a partition $\alpha \in \mathcal{P}_n$ is the set of points $i \in \mathbf{n}$ (*resp.* $i' \in \mathbf{n}'$) which lie in transversal blocks.

Definition

The **kernel** (*resp.* cokernel) of a partition $\alpha \in \mathcal{P}_n$ is the restriction of α to **n** (*resp.* **n**').

$$\alpha = \boxed{\begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array}}$$

 $\operatorname{dom} \alpha = \{1, 3, 4\}, \quad \operatorname{codom} \alpha = \{1', 2'\},$

Definition

The **domain** (*resp.* **codomain**) of a partition $\alpha \in \mathcal{P}_n$ is the set of points $i \in \mathbf{n}$ (*resp.* $i' \in \mathbf{n}'$) which lie in transversal blocks.

Definition

The **kernel** (*resp.* cokernel) of a partition $\alpha \in \mathcal{P}_n$ is the restriction of α to **n** (*resp.* **n**').

$$\alpha = \boxed{\begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array}}$$

 $\operatorname{dom} \alpha = \{1, 3, 4\}, \quad \operatorname{codom} \alpha = \{1', 2'\},$

$$\ker \alpha = \big\{\{1,3,4\},\{2\},\{5\}\big\},$$

Definition

The **domain** (*resp.* **codomain**) of a partition $\alpha \in \mathcal{P}_n$ is the set of points $i \in \mathbf{n}$ (*resp.* $i' \in \mathbf{n}'$) which lie in transversal blocks.

Definition

The **kernel** (*resp.* cokernel) of a partition $\alpha \in \mathcal{P}_n$ is the restriction of α to **n** (*resp.* **n**').

$$\alpha = \overbrace{}^{\underbrace{}}$$

 $\operatorname{dom} \alpha = \{1,3,4\}, \quad \operatorname{codom} \alpha = \{1',2'\},$

 $\ker \alpha = \big\{\{1,3,4\},\{2\},\{5\}\big\}, \quad \operatorname{coker} \alpha = \big\{\{1',2'\},\{3',4'\},\{5'\}\big\}$

Submonoids of \mathcal{P}_n

• \mathcal{T}_n – the full transformation monoid embeds as seen

T_n - the *full transformation monoid* embeds as seen *O_n* ≤ *I_n* ≤ *PT_n* embed similarly

- \mathcal{T}_n the full transformation monoid embeds as seen
- $\mathcal{O}_n \leq \mathcal{I}_n \leq \mathcal{PT}_n$ embed similarly
- \mathcal{B}_n the Brauer monoid each block has size 2

- \mathcal{T}_n the full transformation monoid embeds as seen
- $\mathcal{O}_n \leq \mathcal{I}_n \leq \mathcal{PT}_n$ embed similarly
- \mathcal{B}_n the Brauer monoid each block has size 2
- \mathcal{PB}_n the partial Brauer monoid each block has size 1 or 2

- T_n the full transformation monoid embeds as seen
- $\mathcal{O}_n \leq \mathcal{I}_n \leq \mathcal{PT}_n$ embed similarly
- \mathcal{B}_n the Brauer monoid each block has size 2
- \mathcal{PB}_n the partial Brauer monoid each block has size 1 or 2
- \mathscr{PP}_n the planar partition monoid diagram is planar

- \mathcal{T}_n the full transformation monoid embeds as seen
- $\mathcal{O}_n \leq \mathcal{I}_n \leq \mathcal{PT}_n$ embed similarly
- \mathcal{B}_n the Brauer monoid each block has size 2
- \mathcal{PB}_n the partial Brauer monoid each block has size 1 or 2
- \mathscr{PP}_n the planar partition monoid diagram is planar
- \mathcal{J}_n the Jones monoid diagram is planar; block size 2

- \mathcal{T}_n the full transformation monoid embeds as seen
- $\mathcal{O}_n \leq \mathcal{I}_n \leq \mathcal{PT}_n$ embed similarly
- \mathcal{B}_n the Brauer monoid each block has size 2
- \mathcal{PB}_n the partial Brauer monoid each block has size 1 or 2
- \mathscr{PP}_n the planar partition monoid diagram is planar
- \mathcal{J}_n the Jones monoid diagram is planar; block size 2
- \mathcal{M}_n the *Motzkin monoid* diagram is planar; block size 1 or 2

[2]

Howie, J.M., Fundamentals of Semigroup Theory, Oxford Science Publications, 1995, 1.1, 1.5 & 1.8, 7-35.

James East, Attila Egri-Nagy, Andrew R. Francis, James D. Mitchell, *Finite Diagram Semigroups: Extending the Computational Horizon*, https://arxiv.org/abs/1502.07150