Finitely Presented Semigroups

Michael Torpey

University of St Andrews

2016-05-31

Definition

A semigroup is a set S together with a binary operation $*:S\times S\to S$ such that

$$(x*y)*z = x*(y*z)$$

for all $x, y, z \in S$.

- We may write xy instead of x * y
- Can we describe all semigroups in the same way?

Free Semigroups

• Let X be an alphabet, e.g. $\{a,b,c\}$

Definition

A **word** over X is a finite ordered list of letters from X. e.g. abaacbba

Definition

The **free semigroup** X^+ is the set of all words over X with the operation of concatenation.

e.g. aba * cab = abacab

- Concatenation is associative: $(w_1w_2)w_3 = w_1(w_2w_3)$
- X⁺ is infinite

• If
$$|X| = |Y|$$
 then $X^+ \cong Y^+$

Relators

- We can create other semigroups from free semigroups
- Consider $X = \{a, b\}$
- $X^+ = \{a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, \dots \}$
- We can identify two elements and take a quotient

Example

```
Let S be a semigroup where ab = ba.
Now
```

$$a\underline{a}\underline{b} = a\underline{b}\underline{a},$$

$$a\underline{ab}a = a\underline{ba}a,$$

$$ab\underline{ba}a\underline{ab}a = ab\underline{ab}a\underline{ba}a,$$

and so on.

In S, we can commute a and b however we like.

Semigroup Presentations

We can write ${\boldsymbol{S}}$ using a presentation

Definition

If X is an alphabet and R a set of relators (pairs of words over X) then

 $\langle X|R\rangle$

is a **presentation** for the semigroup defined by taking the free semigroup X^+ and identifying each pair in R.

Example

In our last example, $X = \{a, b\}$ and $R = \{(ab, ba)\}$. Our semigroup S has a presentation

$$\langle a, b \mid ab = ba \rangle$$
.

- In a finitely presented semigroup, one element may be represented by many different strings
- A normal form for S is a set of words such that each element of S appears *precisely once*

Example

In our running example $S = \langle a, b \mid ab = ba \rangle$, elements commute however we want. Move as left and bs right as much as we can:

 $abba = ab\underline{ab} = a\underline{ab}b$, $abbaaaba = aaaaabbb = a^5b^3$.

This gives us the normal form $\{a^i b^j : i, j \in \mathbb{N}\}$. It turns out S is isomorphic to the direct product $\mathbb{N} \times \mathbb{N}$.

Other free objects

Special categories of semigroups have their own free objects.

Example

A free monoid X^* is the free semigroup X^+ with an appended identity, the empty word ε .

Example

A free group F_X has an identity, and uses the alphabet $X \cup X^{-1}$, where each letter a has an inverse a^{-1} such that $aa^{-1} = a^{-1}a = \varepsilon$.

Example

A free abelian group adds relators to F_X so that all letters commute.

Example

A free band adds relators to X^+ so that ww = w for any word w. It turns out to be finite!

Thank you